首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate daytime and nighttime carbon balance and assimilate export in soybean (Glycine max [L.] Merrill) leaves at different photon flux densities, rates of CO2 exchange, specific leaf weights, and concentrations of sucrose and starch were measured at intervals in leaves of pod-bearing `Amsoy 71' and `Wells II' plants grown in a controlled environment room. Assimilate export was estimated from CO2 exchange and change in specific leaf weight. Total diurnal assimilate export was similar for both cultivars. Large cultivar differences existed, however, in the partitioning of carbon into starch reserves and the relative amounts of assimilate exported during the day and the night. Total amounts of both daytime and nighttime export increased with increasing photon flux density, as did sucrose and starch concentrations, specific leaf weight, and rate of respiratory carbohydrate loss at night. Cultivar differences in nighttime rate of export were more closely related to the differences in amount of assimilate available at the end of the day than to differences in daytime rate of net CO2 assimilation. Daytime rates of export, however, were closely related to daytime rates of net CO2 assimilation within each cultivar. The total amount of starch depleted during the 10-hour night increased as starch concentration at the beginning of the night increased.  相似文献   

2.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

3.
Maize (Zea mays L. cv. Pioneer 3184) leaf elongation rate was measured diurnally and was related to diurnal changes in the activities of sucrose metabolizing enzymes and carbohydrate content in the elongating portion of the leaf. The rate of leaf elongation was greatest at midday (1300 hours) and was coincident with the maximum assimilate export rate from the distal portion of the leaf. Leaf elongation during the light period accounted for 70% of the total observed increase in leaf length per 24 hour period. Pronounced diurnal fluctuations were observed in the activities of acid and neutral invertase and sucrose phosphate synthase. Maximum activities of sucrose phosphate synthase and acid invertase were observed at 0900 hours, after which activity declined rapidly. The activity of sucrose phosphate synthase was substantially lower than that observed in maize leaf source tissue. Neutral invertase activity was greatest at midday (1200 hours) and was correlated positively with diurnal changes in leaf elongation rate. There was no significant change in the activity of sucrose synthase over the light/dark cycle. Sucrose accumulation rate increased during a period when leaf elongation rate was maximal and beginning to decline. Maximum sucrose concentration was observed at 1500 hours, when the activities of sucrose metabolizing enzymes were low. At no time was there a significant accumulation of hexose sugars. The rate of starch accumulation increased after the maximum sucrose concentration was observed, continuing until the end of the light period. There was no delay in the onset of starch mobilization at the beginning of the dark period, and essentially all of the starch was depleted by the end of the night. Mobilization of starch in the elongating tissue at night could account for a significant proportion of the calculated increase in the tissue dry weight due to growth. Collectively, the results suggested that leaf growth may be controlled by the activities of certain sucrose metabolizing enzymes and may be coordinated with assimilate export from the distal, source portion of the leaf. Results are discussed with reference to diurnal photoassimilation and export in the distal, source portion of the leaf.  相似文献   

4.
To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates.

Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar.

Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization.

Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration.

  相似文献   

5.
Carbon partitioning and export from mature cotton leaves   总被引:4,自引:0,他引:4       下载免费PDF全文
The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state 14CO2 labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period (r = 0.934) and with nocturnal leaf respiration (r = 0.954). Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined.  相似文献   

6.
Transitions in carbohydrate metabolism and translocation rate were studied for evidence of control of export by the sugar beet (Beta vulgaris L. Klein E.) source leaf. Steady-state labeling was carried out for two consecutive 14-hour light periods and various quantities related to translocation were measured throughout two 24-hour periods. Starch accumulation following illumination was delayed. Near the end of the light period, starch stopped accumulating, whereas photosynthesis rate and sucrose level remained unchanged. At the beginning of the dark period there was a 75-minute delay before starch was mobilized. The rate of import to the developing sink leaves at night was similar to that during the day, whereas export decreased considerably at night.

Starch accumulation and degradation seemed to be initiated in response to the level of illumination. Cessation of starch accumulation before the end of the light period was initiated endogenously. Exogenous control appeared to be mediated by the level of sucrose in the source leaf while endogenous control seemed to be keyed to photoperiod or photosynthetic duration.

  相似文献   

7.
The aim of this work was to investigate the effects on carbohydrate metabolism of a reduction in the capacity to degrade leaf starch in Arabidopsis. The major roles of leaf starch are to provide carbon for sucrose synthesis, respiration and, in developing leaves, for biosynthesis and growth. Wild-type plants were compared with plants of a starch-excess mutant line (sex4) deficient in a chloroplastic isoform of endoamylase. This mutant has a reduced capacity for starch degradation, leading to an imbalance between starch synthesis and degradation and the gradual accretion of starch as the leaves age. During the night the conversion of starch into sucrose in the mutant is impaired; the leaves of the mutant contained less sucrose than those of the wild type and there was less movement of 14C-label from starch to sucrose in radio-labelling experiments. Furthermore, the rate of assimilate export to the roots during the night was reduced in the mutant compared with the wild type. During the day however, photosynthetic partitioning was altered in the mutant, with less photosynthate partitioned into starch and more into sugars. Although the sucrose content of the leaves of the mutant was similar to the wild type during the day, the rate of export of sucrose to the roots was increased more than two-fold. The changes in carbohydrate metabolism in the mutant leaves during the day compensate partly for its reduced capacity to synthesize sucrose from starch during the night.  相似文献   

8.
Two photosynthetic periods and photosynthetic photon flux densities (PPFD) were used to study the relationship between the rate of photosynthesis and starch accumulation in vegetative soybean leaves (Merr. cv Amsoy 71). Plants grown in short daily photosynthetic periods (7 hours) had higher rates of CO2 fixation per unit leaf dry weight and of leaf starch accumulation than plants grown in long daily photosynthetic periods (14 hours) irrespective of PPFD. CO2 fixation rates per unit leaf area were similar in 7-hour and 14-hour plants grown at low PPFD but were highest in 14-hour plants at the high PPFD. When single leaves of 14-hour plants were given 7-hour photosynthetic periods, their rates of starch accumulation remained unchanged. The programming of starch accumulation rate and possibly of photosynthetic rate by the length of the daily photosynthetic period is apparently a whole-plant, not an individual leaf, phenomenon. Programming of chloroplast starch accumulation rate by length of the daily photosynthetic and/or dark periods was independent of PPFD within the ranges used in this experiment.  相似文献   

9.
Claudia Grimmer  Ewald Komor 《Planta》1999,209(3):275-281
Castor bean (Ricinus communis L.) plants were grown for 5–7 weeks in a controlled environment at 350 μl l−1 or 700 μl l−1 CO2. Carbon assimilation, assimilate deposition, dark respiration and assimilate mobilization were measured in leaves 2, 3 and 4 (counted from the base of the plant), and a balance sheet of carbon input and export was elaborated for both CO2 concentrations. Carbon dioxide assimilation was nearly constant over the illumination period, with only a slight depression occurring at the end of the day in mature source leaves, not in young source leaves. Assimilation was ca. 40% higher at 700 μl l−1 than at 350 μl l−1 CO2. The source leaves increased steadily in weight per unit area during the first 3 weeks, more at 700 μl l−1 than at 350 μl l−1 CO2. On top of an irreversible weight increase, there was a large gain in dry weight during the day, which was reversed during the night. This reversible weight gain was constant over the life time of the leaf and ca. 80% higher at 700 μl l−1 than at 350 μl l−1. Most of it was due to carbohydrates. The carbon content (as a percentage) was not altered by the CO2 treatment. Respiration was 25% higher in high-CO2 plants when based on leaf area, but the same when based on dry weight. The rate of carbon export via the phloem was the same during the daytime in plants grown at 350 μl l−1 and 700 μl l−1 CO2. During the night the low-CO2 plants had only 50% of the daytime export rate, in contrast to the high-CO2 plants which maintained the high export rate. It was concluded that the phloem loading system is saturated during the daytime in both CO2 regimes, whereas during the night the assimilate supply is reduced in plants in the normal CO2 concentration. Two-thirds of the carbon exported from the leaves was permanently incorporated as plant dry matter in the residual plant parts. This “assimilation efficiency” was the same for both CO2 regimes. It is speculated that under 350 μl l−1 CO2 the growing Ricinus plant operates at sink limitation during the day and at source limitation during the night. Received: 2 February 1999 / Accepted: 19 April 1999  相似文献   

10.
Diurnal changes in photosynthetic parameters and enzyme activities were characterized in greenhouse grown maize plants (Zea mays L. cv Pioneer 3184). Rates of net photosynthesis and assimilate export were highest at midday, coincident with maximum irradiance. During the day, assimilate export accounted for about 80% of net carbon fixation, and the maximum export rate (35 milligrams CH2O per square decimeter per hour) was substantially higher than the relatively constant rate maintained through the night (5 milligrams CH2O per square decimeter per hour). Activities of sucrose phosphate synthase and NADP-malate dehydrogenase showed pronounced diurnal fluctuations; maximum enzyme activities were generally coincident with highest light intensity. Reciprocal light/dark transfers of plants throughout the diurnal cycle revealed that both enzymes were deactivated by 30 minutes of darkness during the day, and they could both be substantially activated by 30 minutes of illumination at night. During 24 hours of extended darkness, sucrose phosphate synthase activity declined progressively to an almost undetectable level, but was activated after 1.5 hours of illumination. Thus, the diurnal fluctuation in maize sucrose phosphate synthase can be explained by some form of light modulation of enzyme activity and is not due to an endogenous rhythm in activity. No diurnal fluctuations were observed in the activities of NADP-malic enzyme or fructose 6-phosphate-2-kinase. Phosphoenolpyruvate carboxylase was activated by light to some extent (about 50%) when activity was measured under suboptimal conditions in vitro. The results suggested that the rates of sucrose formation and assimilate export were closely aligned with the rate of carbon fixation and the activation state of sucrose phosphate synthase.  相似文献   

11.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

12.
The role of the mature leaf in supplying carbon for growth inother parts of the plant was examined using a steady-rate 14CO2labelling technique. The pattern of events occurring in theleaf during one complete 24 h cycle was compared in plants grownin, and adapted to long and short photoperiods. The rates ofleaf photosynthesis, night respiration and daytime loss of carbonfrom the growing regions of the plant Were similar in long orshort photoperiods. As a percentage of the total carbon fixedduring the photoperiod, total respiration was c. 50% for shortday plants but only 25% for long day plants. Thirty to forty per cent of the carbon fixed during the photoperiodwas retained in the leaf for export during darkness—therest was exported immediately. In leaves of short day plantssucrose and starch were the main form of the stored carbon.By the end of the dark period these compounds had been almostcompletely depleted. In leaves of long day plants there weremuch larger basal levels of sucrose and starch, upon which thediurnal variations were superimposed. These leaves also accumulatedfructosans. The delay in starch remobilization previously foundin leaves of short day plants was also evident in leaves oflong day plants even though large concentrations of sucroseand fructosans were present This suggests the presence of distinctpools of sucrose in the leaf.  相似文献   

13.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

14.
The effects of water stress and CO2 enrichment on photosynthesis, assimilate export, and sucrose-P synthase activity were examined in field grown soybean plants. In general, leaves of plants grown in CO2-enriched atmospheres (300 microliters per liter above unenriched control, which was 349 ± 12 microliters per liter between 0500 and 1900 hours EST over the entire season) had higher carbon exchange rates (CER) compared to plants grown at ambient CO2, but similar rates of export and similar activities of sucrose-P synthase. On most sample dates, essentially all of the extra carbon fixed as a result of CO2 enrichment was partitioned into starch. CO2-enriched plants had lower transpiration rates and therefore had a higher water use efficiency (milligrams CO2 fixed per gram H2O transpired) per unit leaf area compared to nonenriched plants. Water stress reduced CER in nonenriched plants to a greater extent than in CO2-enriched plants. As CER declined, stomatal resistance increased, but this was not the primary cause of the decrease in assimilation because internal CO2 concentration remained relatively constant. Export of assimilates was less affected by water stress than was CER. When CERs were low as a result of the imposed stress, export was supported by mobilization of reserves (mainly starch). Export rate and leaf sucrose concentration were related in a curvilinear manner. When sucrose concentration was above about 12 milligrams per square decimeter, obtained with nonstressed plants at high CO2, there was no significant increase in export rate. Assimilate export rate was also correlated positively with SPS activity and the quantitative relationship varied with CER. Thus, export rate was a function of both CER and carbon partitioning.  相似文献   

15.
The introduction of an antisense DNA into transgenic potato (Solanum tuberosum L.) plants decreased the expression of the chloroplast triose-phosphate translocator and lowered its activity by 20–30%. With plants propagated from tubers, the effect of the transformation on photosynthetic metabolism was analysed by measuring photosynthesis, the formation of leaf starch, and the total and subcellular metabolite contents in leaves. Although the transformants, in contrast to those propagated from cell cultures, did not differ from the wild-type plants in respect to rates of photosynthesis, plant appearance, growth and tuber production, their photosynthetic metabolism was found to be severely affected. The results show that the decrease in activity of the triose-phosphate translocator in the transformants caused a fourfold increase in the level of 3-phosphoglycerate and a corresponding decrease in inorganic phosphate in the stromal compartment, resulting in a large increase in the synthesis of starch. Whereas during a 12-h day period wild-type plants deposited 43% of their CO2 assimilate into starch, this value rose to 61–89% in the transformants. In contrast to the wild-type plants, where the rate of assimilate export from the leaves during the night period was about 75% of that during the day, the export rate from leaves of transformants appeared to be much higher during the night than during the day. As the mobilisation of starch occurs in part hydrolytically, resulting in the formation of glucose, the triose-phosphate translocator loses its exclusive function in the export of carbohydrates from the chloroplasts when the photoassimilates are temporarily deposited as starch. It appears that by directing the CO2 assimilates mainly into starch, the transformants compensate for the deficiency in triose-phosphate translocator activity in such a way that the productivity of the plants is not affected by the transformation.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - 3-PGA 3-phosphoglycerate - Rubisco ribulose,1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - trioseP triose phosphate - WT wild type The able technical assistance of Mrs. K. Wildenberger and Mrs. A. Großpietsch is gratefully acknowledged. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   

16.
Qiu J  Israel DW 《Plant physiology》1992,98(1):316-323
The effects of phosphorus deficiency on carbohydrate accumulation and utilization in 34-day-old soybean (Glycine max L. Merr.) plants were characterized over a diurnal cycle to evaluate the mechanisms by which phosphorus deficiency restricts plant growth. Phosphorus deficiency decreased the net CO2 exchange rate throughout the light period. The decrease in the CO2 exhange rate was associated with a decrease in stomatal conductance and an increase in the internal CO2 concentration. These observations indicate that phosphorus deficiency increased mesophyll resistance. Assimilate export rate from the youngest fully expanded leaves was decreased by phosphorus deficiency, whereas starch concentrations in these leaves were increased. Higher starch concentrations in phosphorus-deficient youngest fully expanded leaves resulted from a longer period of net starch accumulation and a shorter period of net starch degradation relative to those for phosphorus-sufficient controls. Phosphorus deficiency decreased sucrose-P synthase activity by 27% (averaged over the diurnal cycle), and essentially eliminated diurnal variation in sucrose-P-synthase activity. Diurnal variations in nonstructural carbohydrate concentrations in leaves and stems were also less pronounced in phosphorus-deficient plants than in controls. In phosphorus-deficient plants, only 30% of the whole plant starch present at the end of a light phase was utilized during the subsequent 12-hour dark phase as compared with 68% for phosphorus-sufficient controls. Although phosphorus deficiency decreased the CO2 exchange rate and whole plant leaf area, accumulation of high starch concentrations in leaves and stems and restricted starch utilization in the dark indicate that growth processes (i.e. sink activities) were restricted to a greater extent than photosynthetic capacity. Further experimentation is required to determine whether decreased starch utilization in phosphorus-deficient plants is the cause or the result of restricted growth.  相似文献   

17.
Dark respiration in attached and detached mature leaves of thefield bean (Vicia faba L.) was studied whilst leaves experiencedup to 60 h of darkness. The results showed: (1) the initialrespiration rate to vary according to the irradiance duringthe previous photoperiod; (2) the dark respiration rate (perunit area) of attached leaves to be essentially constant duringa normal 12 h night although there was a rapid loss in leafd. wt during this time; (3) after 12 h, the respiration rateof attached leaves decayed to an asymptotic value at about 36h; (4) the respiration rate of leaves detached at the end ofthe photoperiod and maintained in the dark on deionised water,decayed only after 36 h of darkness; (5) there was no differencebetween the respiration rate of attached and detached leavesduring the normal 12 h night. It is concluded that the dark respiration of attached fieldbean leaves is intially related to the synthesis and translocationof sucrose in addition to maintenance. After about 36 h, whenthe rate of CO2 efflux is more or less steady, the CO2 effluxreflects the intensity of maintenance processes only. The maintenancerespiration rate (determined after 60 h in the dark) rangedfrom 062 to 151 mg CO2 (g d. wt)–1 h–1 but wasrelatively unaffected by several applied treatments. Vicia faba L., field bean, respiration, maintenance, nitrate, non-structural carbohydrate, export  相似文献   

18.
Gordon, A. J., Mitchell, D. F., Ryle, G. J. A. and Powell, C.E. 1987. Diurnal production and utilization of photosynthatein nodulated white clover.—J. exp. Bot. 38: 84–98. A steady-state 14C-labelling technique was used to examine thediurnal carbon fixation, storage and export characteristicsof white clover leaves. Approximately 70% of fixed carbon wasexported to other organs during the photoperiod. The remainingcarbon was stored mainly as starch (80% at the end of the photoperiod)with smaller amounts of sucrose, hexoses and charged compounds.Carbon export from the leaf at night was provided by remobilizationof starch. During the photoperiod it was estimated that c.60% of carbonexported from the leaf was directed towards the nodulated root;45% to nodules and 15% to roots. The 40% directed towards theshoot was supplemented by a further 11% of carbon (in the formof amides) re-exported from the nodules. During the photoperiod, all organs of the plant accumulatedcarbohydrate which was available for use during darkness, inconjunction with a diminished supply of exported carbon fromleaves. Nodules exhibited a striking pattern of carbohydratestorage and depletion. The levels of sucrose and starch in thenodules at the end of the photoperiod were sufficient to maintainN2 fixation for 8–9 h of the 12 h dark period. We proposethat continued import from leaves provided the additional sucrosenecessary to support undiminished nodule function throughoutthe entire dark period. Key words: White clover, photosynthate, starch, carbohydrate, nodules, N2 fixation  相似文献   

19.
Sources of Carbon for Export from Spinach Leaves throughout the Day   总被引:7,自引:3,他引:4       下载免费PDF全文
Rates of net carbon exchange, export, starch, and sucrose synthesis were measured in leaves of spinach (Spinacia oleracea L.) throughout a 14-hour period of sinusoidal light to determine the sources of carbon contributing to export. Net carbon exchange rate closely followed light level, but export remained relatively constant throughout the day. In the morning when photosynthesis was low, starch degradation provided most of the carbon for export, while accumulated sucrose was exported during the evening. At high photosynthesis rate, the regulatory metabolite fructose 2,6-bisphosphate was low, allowing more of the newly fixed carbon to flow to sucrose through cytosolic fructose bisphosphatase. When the rate of sucrose synthesis exceeded the rate of export from the leaf, sucrose accumulated and soon thereafter sucrose synthesis declined. A decreasing sucrose synthesis rate resulted in additional carbon moving to the synthesis of starch, which was maintained throughout the remainder of the day. The declining sucrose synthesis rate coincided with decreasing activity of sucrose phosphate synthase present in gel-filtered leaf extracts. A rise in the leaf levels of uridine diphosphoglucose and fructose 6-phosphate throughout the day was consistent with this declining activity.  相似文献   

20.
Carbon Partitioning in Mature Leaves of Pepper: Effects of Daylength   总被引:2,自引:0,他引:2  
Grange, R. 1. 1985. Carbon partitioning in mature leaves ofpepper: effects of daylength.—J. exp. Bot. 36: 1749–1759. The partitioning of recently fixed carbon has been examinedin mature pepper leaves grown in 6, 10 or 14 h photoperiodsat different irradiances chosen to give similar radiation integralsand in a 6 h photoperiod at the lowest of these irradiances.The partitioning of carbon into export, starch, sugars and respirationwas followed over the photopenod and the subsequent night ina mature leaf. The maximum export rate during the day (approximately 18 µgC cm–2 leaf h–1) was not significantly differentamong the treatments. Net photosynthesis rate was directly relatedto irradiance; the proportion of net photosynthesis exportedduring the day was 33% in 6-h days and 57% in 14-h days. Leafstarch accumulation (as a proportion of net photosynthesis rate)increased slightly when plants were grown in 6-h days. The remobilization of starch and sugars at night allowed exportrates to remain similar over 24 h when plants were grown in10-h or 14-h photoperiods. Leaves grown in 6-h days showed nosignificant changes in export rate during the first few hoursof night but exhausted their starch reserves during the nightand export rates declined. Sucrose and hexose levels decreased at the onset of darkness,but did not fall below 40 µg cm–2 in plants grownin 10-h or 14-h photoperiods; when this level was reached after3–4 h of darkness, starch breakdown began. In leaves grownin both 6-h treatments, sucrose levels fell below 40 µgcm–2 when starch reserves were depleted during the nightand the export rate decreased concurrently. The results are discussed in relation to the control of exportand starch metabolism in the leaf. Key words: Pepper, partitioning, daylength  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号