共查询到20条相似文献,搜索用时 0 毫秒
1.
The alpha-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria. A possible mechanism for the regulation of intramitochondrial free CA2+. 下载免费PDF全文
Mitochondria isolated from rat hearts perfused with adrenaline, and from hearts excised from adrenaline-treated rats, showed an enhanced rate of respiration-dependent Ca2+ uptake. Adrenaline pretreatment did not change the activity of the Na+/Ca2+-antiporter of isolated heart mitochondria. Simultaneous measurements of the membrane potential revealed that perfusion with adrenaline has no significant effect on this parameter during Ca2+ accumulation. The activation of Ca2+ uptake was induced also by the alpha-adrenergic agonist, methoxamine, but not by the beta-adrenergic agonist, isoprenaline. Methoxamine pretreatment also increased the sensitivity of alpha-oxoglutarate dehydrogenase in intact mitochondria to 10 nM--300 nM extramitochondrial Ca2+ during steady-state Ca2+ recycling across the inner membrane. Possible implications of these data for the adrenergic regulation of oxidative metabolism are discussed. 相似文献
2.
Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. 下载免费PDF全文
(1) The free Ca2+ concentration of the matrix of rat heart mitochondria ([Ca2+]m) was determined from the fluorescence of internalized indo-1. The value of the Kd of indo-1-Ca2+ in the mitochondrial matrix was determined to be 95 nM, on the basis of equilibration of [Ca2+]m with the extramitochondrial free Ca2+ ([Ca2+]o) in the presence of rotenone, nigericin, valinomycin and Br-A23187. (2) [Ca2+]m responded to energization/de-energization protocols, the inhibition of Ca2+-uptake by Ruthenium Red and the potentiation of Ca2+-efflux by Na+ in a manner which was consistent with the known kinetic properties of the mitochondrial Ca2+-transport processes. (3) The concentration gradient [Ca2+]m/[Ca2+]o was found to be near unity (0.82 +/- 0.18) when mitochondria were incubated in media containing 10 mM-Na+; the additional presence of 1 mM-Mg2+ reduced the gradient to values below unity (0.26 +/- 0.03). The polyamine spermine increased the Ca2+ concentration gradient in the presence of 1 mM-Mg2+. (4) The fraction of pyruvate dehydrogenase in the active form (PDHA) was found to increase with [Ca2+]m, with a K0.5 for activation of approximately 300 nM-Ca2+. This value of the activation constant was not affected by conditions, e.g. addition of Mg2+, which changed the [Ca2+]m/[Ca2+]o concentration gradient, and the presence of different oxidizable substrates, which changed the [NADH/NAD+]m concentration ratio. Thus pyruvate dehydrogenase interconversion responds directly to changes in [Ca2+]m, as inferred in earlier work. 相似文献
3.
Mitochondrial Ca(2+) uptake plays a fundamental role in the regulation of energy production and cell survival. Under physiological conditions, mitochondrial Ca(2+) uptake occurs by a uniport mechanism driven electrophoretically by the membrane potential created by the respiratory chain. The activity and the biochemical properties of the mitochondrial calcium uniporter (MCU) were extensively characterized for decades but the molecular identity of the channel has remained elusive. Here, we review the recent discovery of the mitochondria Ca(2+) uniporter that represents a groundbreaking result for the molecular understanding of mitochondrial Ca(2+) homeostasis and will provide insight into the role of mitochondrial Ca(2+) deregulation in the pathogenesis of human disorders. 相似文献
4.
Ca(2+) is an important regulatory ion and alteration of mitochondrial Ca(2+) homeostasis can lead to cellular dysfunction and apoptosis. Ca(2+) is transported into respiring mitochondria via the Ca(2+) uniporter, which is known to be inhibited by Mg(2+). This uniporter-mediated mitochondrial Ca(2+) transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg(2+) inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg(2+) and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg(2+) inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca(2+) uptake. The model also appropriately depicts the inhibitory effect of Mg(2+) on the uniporter function, in which Ca(2+) uptake is hyperbolic in the absence of Mg(2+) and sigmoid in the presence of Mg(2+). The model suggests a mixed-type inhibition mechanism for Mg(2+) inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca(2+) handling to understand the mechanisms by which Ca(2+) mediates signaling pathways and modulates energy metabolism. 相似文献
5.
6.
Stimulation of receptors on the surface of animal cells often evokes cellular responses by raising intracellular Ca(2+) concentration. The rise in cytoplasmic Ca(2+) drives a plethora of processes, including neurotransmitter release, muscle contraction, and cell growth and proliferation. Mitochondria help shape intracellular Ca(2+) signals through their ability to rapidly take up significant amounts of Ca(2+) from the cytosol via the uniporter, a Ca(2+)-selective ion channel in the inner mitochondrial membrane. The uniporter is subject to inactivation, whereby a sustained cytoplasmic Ca(2+) rise prevents further Ca(2+) uptake. In spite of its importance in intracellular Ca(2+) signaling, little is known about the mechanism underlying uniporter inactivation. Here, we report that maneuvers that promote matrix alkalinisation significantly reduce inactivation whereas acidification exacerbates it. We further show that the F(1)F(0)-ATP synthase complex is an important source of protons for inactivation of the uniporter. These findings identify a novel molecular mechanism that regulates the activity of this ubiquitous intracellular Ca(2+) channel, with implications for intracellular Ca(2+) signaling and aerobic ATP production. 相似文献
7.
Kimberly M. Broekemeier Randy J. Krebsbach Douglas R. Pfeiffer 《Molecular and cellular biochemistry》1994,139(1):33-40
Commercial ruthenium red is often purified by a single recrystallization as described by Luft, J.H. (1971) Anat Rec 171, 347–368, which yields small amounts of material having an apparent molar extinction coefficient of 67,400 at 533 nm. A simple modification to the procedure dramatically improves the yield, allowing crystallization to be repeated. Three times recrystallized ruthenium red has an apparent extinction coefficient of 85,900, the highest value reported to date. Both crude and highly purified ruthenium red can be shown to inhibit reverse activity of the mitochondrial Ca2+ uniporter (uncoupled mitochondria), provided that care is taken to minimize and account for Ca2+ release through the permeability transition pore. Crude ruthenium red is 7–10 fold more potent than the highly purified material in this regard, on an actual ruthenium red concentration basis. The same relative potency is seen against forward uniport (coupled mitochondria), however, the I50 values are 10 fold lower for both the crude and purified preparations. These data demonstrate unambiguously that the energy state of mitochondria affects the sensitivity of the Ca2+ uniporter to ruthenium red preparations, and that both the forward and reverse reactions are subject to complete inhibition. The data suggest, however, that the active inhibitor may not be ruthenium redper se, but one or more of the other ruthenium complexes which are present in ruthenium red preparations.Abbreviations CCP
carbonyl cyanide p-chlorophenylhydrazone
- CSA
cyclosporin A
- Hepes
4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid 相似文献
8.
9.
10.
Biphasic Ca2+ response of adenylate cyclase. The role of calmodulin in its activation by Ca2+ ions 总被引:3,自引:0,他引:3
T J Resink S Stucki G Y Grigorian A Zschauer F R Bühler 《European journal of biochemistry》1986,154(2):451-456
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets. 相似文献
11.
Hernández-SanMiguel E Vay L Santo-Domingo J Lobatón CD Moreno A Montero M Alvarez J 《Cell calcium》2006,40(1):53-61
There is increasing evidence that mitochondria play an important role in the control of cytosolic Ca2+ signaling. We show here that the main mitochondrial Ca2+-exit pathway, the mitochondrial Na+/Ca2+ exchanger, controls the pattern of cytosolic Ca2+ oscillations in non-excitable cells. In HeLa cells, the inhibitor of the mitochondrial Na+/Ca2+ exchanger CGP37157 changed the pattern of the oscillations induced by histamine from a high-frequency irregular one to a lower frequency baseline spike type, surprisingly with little changes in the average Ca2+ values of a large cell population. In human fibroblasts, CGP37157 increased the frequency of the baseline oscillations in cells having spontaneous activity and induced the generation of oscillations in cells without spontaneous activity. This effect was dose-dependent, disappeared when the inhibitor was washed out and was not mimicked by mitochondrial depolarization. CGP37157 increased mitochondrial [Ca2+] and ATP production in histamine-stimulated HeLa cells, but the effect on ATP production was only transient. CGP37157 also activated histamine-induced Ca2+ release from the endoplasmic reticulum and increased the size of the cytosolic Ca2+ peak induced by histamine in HeLa cells. Our results suggest that the mitochondrial Na+/Ca2+ exchanger directly modulates inositol 1,4,5-trisphosphate-induced Ca2+ release and in that way controls cytosolic Ca2+ oscillations. 相似文献
12.
13.
The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring. 相似文献
14.
Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epididymal adipose tissue. Evidence against a role for Ca2+ in the activation of pyruvate dehydrogenase by insulin. 下载免费PDF全文
The sensitivity of rat epididymal-adipose-tissue pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase to Ca2+ ions was studied both in mitochondrial extracts and within intact coupled mitochondria. It is concluded that all three enzymes may be activated by increases in the intramitochondrial concentration of Ca2+ and that the distribution of Ca2+ across the mitochondrial inner membrane is determined, as in rat heart mitochondria, by the relative activities of a uniporter (which transports Ca2+ into mitochondria and is inhibited by Mg2+ and Ruthenium Red) and an antiporter (which allows Ca2+ to leave mitochondria in exchange for Na+ and is inhibited by diltiazem). Previous studies with incubated fat-cell mitochondria have indicated that the increases in the amount of active non-phosphorylated pyruvate dehydrogenase in rat epididymal tissue exposed to insulin are the result of activation of pyruvate dehydrogenase phosphate phosphatase. In the present studies, no changes in the activity of the phosphatase were found in extracts of mitochondria, and thus it seemed likely that insulin altered the intramitochondrial concentration of some effector of the phosphatase. Incubation of rat epididymal adipose tissue with medium containing a high concentration of CaCl2 (5mM) was found to increase the active form of pyruvate dehydrogenase to much the same extent as insulin. However, the increases caused by high [Ca2+] in the medium were blocked by Ruthenium Red, whereas those caused by insulin were not. Moreover, whereas the increases resulting from both treatments persisted during the preparation of mitochondria and their subsequent incubation in the absence of Na+, only the increases caused by treatment of the tissue with insulin persisted when the mitochondria were incubated in the presence of Na+ under conditions where the mitochondria are largely depleted of Ca2+. It is concluded that insulin does not act by increasing the intramitochondrial concentration of Ca2+. This conclusion was supported by finding no increases in the activities of the other two Ca2+-responsive intramitochondrial enzymes (NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in mitochondria prepared from insulin-treated tissue compared with controls. 相似文献
15.
The molecular components of the mitochondrial Ca2+ uptake machinery have been only recently identified. In the last months, in addition to the pore forming subunit and of one regulatory protein (named MCU and MICU1, respectively) other four components of this complex have been described. In addition, a MCU KO mouse model has been generated and a genetic human disease due to missense mutation of MICU1 has been discovered. In this contribution, we will first summarize the recent findings, discussing the roles of the different subunits of the mitochondrial Ca2+ uptake complex, pointing to the current contradictions in the published data, as well as possible explanations. Finally we will speculate on the recent, totally unexpected, results obtained in the MCU knock-out (KO) mice. 相似文献
16.
Richard G. Hansford 《Journal of bioenergetics and biomembranes》1994,26(5):495-508
A model has been proposed in which mitochondrial Ca2+ ion transport serves to regulate mitochondrial matrix free Ca2+ ([Ca2+]m), with the advantage to the animal that this allows the regulation of pyruvate dehydrogenase and the tricarboxylate cycle in response to energy demand. This article examines recent evidence for dehydrogenase activation and for increases in [Ca2+]m in response to increased tissue energy demands, especially in cardiac myocytes and in heart. It critiques recent results on beat-to-beat variation in [Ca2+]m in cardiac muscle and also briefly surveys the impact of mitochondrial Ca2– transport on transient changes in cytosolic free Ca2+ in excitable tissues. Finally, it proposes that a failure to elevate [Ca2+]m sufficiently in response to work load may underlie some cardiomyopathies of metabolic origin. 相似文献
17.
The role of rapidly exchanging intracellular Ca2+ stores in the control of Ca2+ homeostasis is reviewed. The following issues are discussed: the reasons why such stores exist in eukaryotic cells; the differences between the terminal cisternae of the skeletal muscle sarcoplasmic reticulum, which have direct, physical connection with the T tubules of the plasmalemma, and the Ca2+ stores located in the depth of the cytoplasm, which are stimulated by second messengers; the cytological nature (subcompartments of the ER) of the rapidly exchanging Ca2+ stores and their functional significance. The conclusions introduce recent developments in which intracellular Ca2+ stores have been investigated also by molecular biology techniques. 相似文献
18.
Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. 下载免费PDF全文
1. The matrix pyrophosphate (PPi) content of isolated energized rat liver mitochondria incubated in the presence of ATP, Mg2+, Pi and respiratory substrate was about 100 pmol/mg of protein. 2. After incubation with sub-micromolar [Ca2+], this was increased by as much as 300%. There was a correlation between the effects of Ca2+ on PPi and on the increase in matrix volume reported previously [Halestrap, Quinlan, Whipps & Armston (1986) Biochem. J. 236, 779-787]. Half-maximal effects were seen at 0.3 microM-Ca2+. 3. Coincident with these effects, the total adenine nucleotide content increased in a carboxyatractyloside-sensitive manner. 4. Incubation with 0.2-0.5 mM-butyrate induced similar but smaller effects on mitochondrial swelling and matrix PPi and total adenine nucleotide content. Addition of butyrate after Ca2+, or vice versa, caused Ca2+-induced mitochondrial swelling to stop or reverse, while matrix PPi increased 30-fold. 5. Addition of atractyloside or the omission of ATP from incubations greatly enhanced swelling induced by Ca2+ without increasing matrix PPi. 6. Swelling of mitochondria incubated under de-energized conditions in iso-osmotic KSCN was progressively enhanced by the addition of increasing concentrations of PPi (1-20 mM) or valinomycin. 7. In iso-osmotic potassium pyrophosphate swelling was slow initially, but accelerated with time. This acceleration was inhibited by ADP, whereas carboxyatractyloside induced rapid swelling. Swelling in other iso-osmotic PPi salts showed that the rate of entry decreased in the order NH4+ greater than K+ greater than Na+ greater than Li+, whereas choline, tetramethylammonium and Tris did not enter. It is suggested that the adenine nucleotide translocase transports small univalent cations when PPi is bound and that PPi can also be transported when the transporter is in the conformation induced by carboxyatractyloside. 8. It is concluded that Ca2+ and butyrate cause swelling of energized mitochondria through this effect of PPi on K+ permeability of the mitochondrial inner membrane. 9. Freeze-clamped livers from rats treated with glucagon or phenylephrine show 30-50% increases in tissue PPi. It is proposed that Ca2+-mediated increases in mitochondrial PPi are responsible for the increase in matrix volume and total adenine nucleotide content observed after hormone treatment. 相似文献
19.