首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The YscC protein of Yersinia enterocolitica is essential for the secretion of anti-host factors, called Yops, into the extracellular environment. It belongs to a family of outer membrane proteins, collectively designated secretins, that participate in a variety of transport processes. YscC has been shown to exist as a stable oligomeric complex in the outer membrane. The production of the YscC complex is regulated by temperature and is reduced in strains carrying mutations in the yscN-U operon or in the virG gene. The VirG lipoprotein was shown to be required for efficient targeting of the complex to the outer membrane. Electron microscopy revealed that purified YscC complexes form ring-shaped structures of ≈20 nm with an apparent central pore. Because of the architecture of the multimer, YscC appears to represent a novel type of channel-forming proteins in the bacterial outer membrane.  相似文献   

2.
YscC is the integral outer membrane component of the type III protein secretion machinery of Yersinia enterocolitica and belongs to the family of secretins. This group of proteins forms stable ring-like oligomers in the outer membrane, which are thought to function as transport channels for macromolecules. The YscC oligomer was purified after solubilization from the membrane with a nonionic detergent. Sodium dodecyl sulfate did not dissociate the oligomer, but it caused a change in electrophoretic mobility and an increase in protease susceptibility, indicating partial denaturation of the subunits within the oligomer. The mass of the homo-oligomer, as determined by scanning transmission electron microscopy, was approximately 1 MDa. Analysis of the angular power spectrum from averaged top views of negatively stained YscC oligomers revealed a 13-fold angular order, suggesting that the oligomer consists of 13 subunits. Reconstituted in planar lipid bilayers, the YscC oligomer displayed a constant voltage-independent conductance of approximately 3 nS, thus forming a stable pore. However, in vivo, the expression of YscC did not lead to an increased permeability of the outer membrane. Electron microscopy revealed that the YscC oligomer is composed of three domains, two stacked rings attached to a conical domain. This structure is consistent with the notion that the secretin forms the upper part of the basal body of the needle structure of the type III secreton.  相似文献   

3.
YscV (FlhA in the flagellum) is an essential component of the inner membrane (IM) export apparatus of the type III secretion injectisome. It contains eight transmembrane helices and a large C-terminal cytosolic domain. YscV was expressed at a significantly higher level than the other export apparatus components YscR, YscS, YscT, and YscU, and YscV-EGFP formed bright fluorescent spots at the bacterial periphery, colocalizing in most cases with YscC-mCherry. This suggested that YscV is the only protein of the export apparatus that oligomerizes. Oligomerization required the cytosolic domain of YscV, as well as YscR, -S, -T, but no other Ysc protein, indicating that an IM platform can assemble independently from the membrane-ring forming proteins YscC, -D, -J. However, in the absence of YscC, -D, -J, this IM platform moved laterally at the bacterial surface. YscJ, but not YscD could be recruited to the IM platform in the absence of the secretin YscC. As YscJ was shown earlier to be also recruited by the outer membrane (OM) platform made of YscC and YscD, we infer that assembly of the injectisome proceeds through the independent assembly of an IM and an OM platform that merge through YscJ.  相似文献   

4.
The phage shock protein locus (pspFpspABCDE) of Escherichia coli has proved to be something of an enigma since its discovery. The physiological functions of the psp locus, including those of the predicted effector protein PspA, are unknown. In a previous genetic screen, we determined that a Yersinia enterocolitica pspC mutant was severely attenuated for virulence. In this study, the psp locus of Y. enterocolitica was characterized further. The pspC gene of Y. enterocolitica was found to be important for normal growth when the Ysc type III secretion system was expressed in the laboratory. This growth defect was specifically caused by production of the secretin protein, YscC. Expression of the psp genes was induced when the type III secretion system was functional or when only the yscC gene was expressed. This induction of psp gene expression required a functional pspC gene. Most significantly, evidence suggests that the expression of at least one gene that is not part of the psp locus is regulated by Psp proteins. This unidentified gene (or genes) may also be important for growth when the type III secretion system is expressed. These conclusions are supported by the effects of various psp mutations on virulence. This is the first indication that Psp proteins might be involved in the regulation of genes besides the psp locus itself.  相似文献   

5.
The Yersinia enterocolitica phage shock protein (Psp) system is induced when the Ysc type III secretion system is produced or when only the YscC secretin component is synthesized. Some psp null mutants have a growth defect when YscC is produced and a severe virulence defect in animals. The Y. enterocolitica psp locus is made up of two divergently transcribed cistrons, pspF and pspABCDycjXF. pspA operon expression is dependent on RpoN (sigma(54)) and the enhancer-binding protein PspF. Previous data indicated that PspF also controls at least one gene that is not part of the psp locus. In this study we describe the identification of pspG, a new member of the PspF regulon. Predicted RpoN-binding sites upstream of the pspA genes from different bacteria have a common divergence from the consensus sequence, which may be a signature of PspF-dependent promoters. The Y. enterocolitica pspG gene was identified because its promoter also has this signature. Like the pspA operon, pspG is positively regulated by PspF, negatively regulated by PspA, and induced in response to the production of secretins. Purified His(6)-PspF protein specifically interacts with the pspA and pspG control regions. A pspA operon deletion mutant has a growth defect when the YscC secretin is produced and a virulence defect in a mouse model of infection. These phenotypes were exacerbated by a pspG null mutation. Therefore, PspG is the missing component of the Y. enterocolitica Psp regulon that was previously predicted to exist.  相似文献   

6.
The assembly of the Yersinia enterocolitica type III secretion injectisome was investigated by grafting fluorescent proteins onto several components, YscC (outer‐membrane (OM) ring), YscD (forms the inner‐membrane (IM) ring together with YscJ), YscN (ATPase), and YscQ (putative C ring). The recombinant injectisomes were functional and appeared as fluorescent spots at the cell periphery. Epistasis experiments with the hybrid alleles in an array of injectisome mutants revealed a novel outside‐in assembly order: whereas YscC formed spots in the absence of any other structural protein, formation of YscD foci required YscC, but not YscJ. We therefore propose that the assembly starts with YscC and proceeds through the connector YscD to YscJ, which was further corroborated by co‐immunoprecipitation experiments. Completion of the membrane rings allowed the subsequent assembly of cytosolic components. YscN and YscQ attached synchronously, requiring each other, the interacting proteins YscK and YscL, but no further injectisome component for their assembly. These results show that assembly is initiated by the formation of the OM ring and progresses inwards to the IM ring and, finally, to a large cytosolic complex.  相似文献   

7.
Salmonella enterica employs two type III secretion systems (T3SS) for interactions with host cells during pathogenesis. The T3SS encoded by Salmonella pathogenicity island 2 (SPI2) is required for the intracellular replication of Salmonella and the survival inside phagocytes. During growth in vitro, acidic pH is a signal that promotes secretion of proteins by this T3SS. We analyzed protein levels and subcellular localization of various T3SS subunits under in vitro conditions at acidic or neutral pH, inducing or ablating secretion, respectively. Growth at acidic pH resulted in higher levels of SsaC, a protein forming the outer membrane secretin, without increasing expression of the operon containing ssaC. Acidic pH also induced oligomerization of SsaC subunits, a prerequisite for a functional secretin pore. It has previously been described that environmental stimuli resembling the intraphagosomal habitat of Salmonella control the expression of SPI2 genes. Here we propose that such stimuli also modulate the assembly of a functional T3SS that is capable of translocation of effector proteins into the host cell.  相似文献   

8.
Secretins are channels that allow translocation of macromolecules across the outer membranes of Gram-negative bacteria. Virulence, natural competence, and motility are among the functions mediated by these large oligomeric protein assemblies. Filamentous phage also uses secretins to exit their bacterial host without causing cell lysis. However, the secretin is only a part of a larger membrane-spanning complex, and additional proteins are often required for its formation. A class of outer membrane lipoproteins called pilotins has been implicated in secretin assembly and/or localization. Additional accessory proteins may also be involved in secretin stability. Significant progress has recently been made toward deciphering the complex interactions required for functional secretin assembly. To allow for easier comparison between different systems, we have classified the secretins into five different classes based on their requirements for proteins involved in their assembly, localization, and stability. An overview of pilotin and accessory protein structures, functions, and characterized modes of interaction with the secretin is presented.  相似文献   

9.
The Type II secretion nanomachine transports folded proteins across the outer membrane of Gram-negative bacteria. Recent X-ray crystallography, electron microscopy, and molecular modeling studies provide structural insights into three functionally and spatially connected units of this nanomachine: the cytoplasmic and inner membrane energy-harvesting complex, the periplasmic helical pseudopilus, and the outer membrane secretin. Key advances include cryo-EM reconstruction of the secretin and demonstration that it interacts with both secreted substrates and a crucial transmembrane clamp protein, plus a biochemical and structural explanation of the role of low-abundance pseudopilins in initiating pseudopilus growth. Combining structures and protein interactions, we synthesize a 3D view of the complete complex consistent with a stepwise pathway in which secretin oligomerization defines sites of nanomachine biogenesis.  相似文献   

10.
A cloned fragment of Yersinia enterocolitica DNA complemented the defect in ferrioxamine B uptake of an Escherichia coli fhuE mutant lacking the outer membrane high-affinity transport protein FhuE. Subcloning revealed that a 13.7-kDa outer membrane protein was required for complementation. The amino acid sequence deduced from the nucleotide sequence showed extensive homology to PCPHi, an outer membrane lipoprotein of Haemophilus influenzae. We therefore termed this protein PCPYe. Plasmid-encoded pcpY mediated a low-affinity uptake of ferrioxamine B which may be caused by changes in the permeability of the outer membrane due to an overexpression of this outer membrane protein. A transposon insertion mutant in the plasmid-encoded pcpY gene was transferred into the chromosome of Y. enterocolitica. The resulting mutation had no effect on the high-affinity uptake of ferrioxamine B in Yersinia cells. Using the antibiotic ferrimycin we were able to isolate a Y. enterocolitica mutant lacking the high-affinity outer membrane receptor for ferrioxamine uptake, termed FoxA.  相似文献   

11.
The secretion of pathogenicity factors by Salmonella typhimurium is mediated by a type III secretion system that includes an outer membrane protein of the secretin family. Related secretins are also required for f1 phage assembly and type II secretion. When the C-terminal 43 amino acids of the S. typhimurium secretin InvG are added to f1 pIV, the chimeric f1 pIV-'InvG43 protein becomes dependent on the co-expression of another gene, invH , for function in phage assembly. [3H]-palmitic acid labelling, globomycin sensitivity and density gradient flotation were used to demonstrate that InvH is an outer membrane lipoprotein that is processed by signal peptidase II. A complex between chimeric f1 pIV-'InvG43 and InvH was demonstrated in vivo. InvH was shown to be required for the proper localization of InvG in the outer membrane and for the secretion of the virulence factor SipC. These results suggest that InvH and InvG are part of the functional outer membrane translocation complex in type III secretion systems.  相似文献   

12.
13.
Pseudomonas syringae pv. syringae 61 contains a 25-kb cluster of hrp genes that are required for elicitation of the hypersensitive response (HR) in tobacco. TnphoA mutagenesis of cosmid pHIR11, which contains the hrp cluster, revealed two genes encoding exported or inner-membrane-spanning proteins (H.-C. Huang, S. W. Hutcheson, and A. Collmer, Mol. Plant-Microbe Interact. 4:469-476, 1991). The gene in complementation group X, designated hrpH, was subcloned on a 3.1-kb SalI fragment into pCPP30, a broad-host-range, mobilizable vector. The subclone restored the ability of hrpH mutant P. syringae pv. syringae 61-2089 to elicit the HR in tobacco. DNA sequence analysis of the 3.1-kb SalI fragment revealed a single open reading frame encoding an 81,956-Da preprotein with a typical amino-terminal signal peptide and no likely inner-membrane-spanning hydrophobic regions. hrpH was expressed in the presence of [35S]methionine by using the T7 RNA polymerase-promoter system and vector pT7-3 in Escherichia coli and was shown to encode a protein with an apparent molecular weight of 83,000 on sodium dodecyl sulfate-polyacrylamide gels. The HrpH protein in E. coli was located in the membrane fraction and was absent from the periplasm and cytoplasm. The HrpH protein possessed similarity with several outer membrane proteins that are known to be involved in protein or phage secretion, including the Klebsiella oxytoca PulD protein, the Yersinia enterocolitica YscC protein, and the pIV protein of filamentous coliphages. All of these proteins possess a possible secretion motif, GG(X)12VP(L/F)LXXIPXIGXL(F/L), near the carboxyl terminus, and they lack a carboxyl-terminal phenylalanine, in contrast to other outer membrane proteins with no known secretion function. These results suggest that the P. syringae pv. syringae HrpH protein is involved in the secretion of a proteinaceous HR elicitor.  相似文献   

14.
15.
Secretins are oligomeric proteins that mediate the export of macromolecules across the bacterial outer membrane. The members of the secretin superfamily possess a C-terminal homology domain that is important for oligomerization and channel formation, while their N-terminal halves are thought to be involved in system-specific interactions. The XcpQ secretin of Pseudomonas spp. is a component of the type II secretion pathway. XcpQ from Pseudomonas alcaligenes is not able to functionally replace the secretin of the closely related species Pseudomonas aeruginosa. By analysis of chimeric XcpQ proteins, a region important for species-specific functioning was mapped between amino acid residues 344 and 478 in the C-terminal homology domain. Two chromosomal suppressor mutations were obtained that resulted in the proper functioning in P. aeruginosa of P. alcaligenes XcpQ and inactive hybrids. These mutations caused a defect in the synthesis of the lipopolysaccharide (LPS) outer core region. Subsequent analysis of different LPS mutants showed that changes in the outer core and not the loss of O antigen caused the suppressor phenotype. High concentrations of divalent cations in the growth medium also allowed P. alcaligenes XcpQ and inactive hybrids to function properly in P. aeruginosa. Since divalent cations are known to affect the structure of LPS, this observation supports the hypothesis that LPS has a role in the functioning of secretins.  相似文献   

16.
Related outer membrane proteins, termed secretins, participate in the secretion of macromolecules across the outer membrane of many Gram-negative bacteria. In the pullulanase-secretion system, PulS, an outer membrane-associated lipoprotein, is required both for the integrity and the proper outer membrane localization of the PulD secretin. Here we show that the PulS-binding site is located within the C-terminal 65 residues of PulD. Addition of this domain to the filamentous phage secretin, pIV, or to the unrelated maltose-binding protein rendered both proteins dependent on PulS for stability. A chimeric protein composed of bacteriophage f1 pIV and the C-terminal domain of PulD required properly localized PulS to support phage assembly. An in vivo complex formed between the pIV-PulD65 chimera and PulS was detected by co-immunoprecipitation and by affinity chromatography.  相似文献   

17.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

18.
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.  相似文献   

19.
Aeromonas hydrophila uses the type II secretion system (T2SS) to transport protein toxins across the outer membrane. The inner membrane complex ExeAB is required for assembly of the ExeD secretion channel multimer, called the secretin, into the outer membrane. A putative peptidoglycan‐binding domain (Pfam number PF01471) conserved in many peptidoglycan‐related proteins is present in the periplasmic region of ExeA (P‐ExeA). In this study, co‐sedimentation analysis revealed that P‐ExeA was able to bind to highly pure peptidoglycan. The protein assembled into large multimers in the presence of peptidoglycan fragments, as shown in native PAGE, gel filtration and cross‐linking experiments. The requirement of peptidoglycan for multimerization was abrogated when the protein was incubated at 30°C and above. These results provide evidence that the putative peptidoglycan‐binding domain of ExeA is involved in physical contact with peptidoglycan. The interactions facilitate the multimerization of ExeA, favouring a model in which the protein forms a multimeric structure on the peptidoglycan during the ExeAB‐dependent assembly of the secretin multimer in the outer membrane.  相似文献   

20.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号