首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have studied the metal-catalyzed oxidation (MCO) of brain-derived neurotrophic factor (BDNF) with regard to target sites and potential conformational changes of the protein. The exposure of BDNF to three different levels of ascorbate/Cu(II)/O2 [20 microM Cu(II), 2 mM ascorbate (level 1); 20 microM Cu(II), 4 mM ascorbate (level 2); 40 microM Cu(II), 4 mM ascorbate (level 3)], chosen based on the extent of chemical modification of Met and His, respectively, resulted in the exclusive oxidation of a buried Met residue, Met92, at level 1 but in the predominant oxidation of His at level 3. His modification had a significant impact on the structure of BDNF, as quantified by CD and ANSA fluorescence measurements, while Met oxidation had not, also assessed through complementary oxidation of BDNF through hydrogen peroxide. Our ultimate objective was the correlation of the surface exposure of an oxidized His residue in a protein with potential effects on the conformational integrity of the oxidized protein. In a series of three proteins, human growth hormone (hGH), human relaxin (hR1x), and BDNF, we have now observed that His oxidation is paralleled by significant conformational changes when the target His residue is more surface exposed (hR1x, BDNF) while conformational consequences of His modification are less significant when the target His residues are more buried in the interior of the protein (hGH).  相似文献   

2.
In this study, we characterized the chemical modifications in the monoclonal antibody (IgG(2)) aggregates generated under various conditions, including mechanical, chemical, and thermal stress treatment, to provide insight into the mechanism of protein aggregation and the types of aggregate produced by the different stresses. In a separate study, additional biophysical characterization was performed to arrange these aggregates into a classification system (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118-25133). Here, we report that different aggregates possessed different types and levels of chemical modification. For chemically treated samples, metal-catalyzed oxidation using copper showed site-specific oxidation of Met(246), His(304), and His(427) in the Fc portion of the antibody, which might be attributed to a putative copper-binding site. For the hydrogen peroxide-treated sample, in contrast, four solvent-exposed Met residues in the Fc portion were completely oxidized. Met and/or Trp oxidation was observed in the mechanically stressed samples, which is in agreement with the proposed model of protein interaction at the air-liquid interface. Heat treatment resulted in significant deamidation but almost no oxidation, which is consistent with thermally induced aggregates being generated by a different pathway, primarily by perturbing conformational stability. These results demonstrate that chemical modifications are present in protein aggregates; furthermore, the type, locations, and severity of the modifications depend on the specific conditions that generated the aggregates.  相似文献   

3.
This report describes the physical, chemical, and biological characterization of recombinant human relaxin (rhRlx) used as a probe to establish the disulfide pairing in native human relaxin. This strategy is necessary since native human relaxin is only available in the nanogram range. The relaxin molecule is composed of two nonidentical peptide chains, an A-chain 24 amino acids in length and a B-chain of 29 amino acids, linked by two disulfide bridges with an additional disulfide linkage in the A-chain. Native relaxin isolated from human corpora lutea was compared to rhRlx by reversed-phase chromatography, partial sequence analysis, mass spectroscopy, and bioassay. The potency of rhRlx was established by its ability to stimulate cAMP from primary human uterine endometrial cells. Native relaxin isolated from human corpora lutea was equipotent to chemically synthesized relaxin, which in turn was equipotent to rhRlx. A tryptic map was developed for rhRlx to confirm the complete amino acid sequence and assignment of the disulfide bonds. The three disulfide bonds (CysA10-CysA15, CysA11-CysB11, and CysA24-CysB23) were assigned by mass spectrometric analysis of the tryptic peptides and by comparison to chemically synthesized peptides disulfide linked in the two most probable configurations. In addition, the observed amino acid composition and sequence of rhRlx was in agreement with that predicted from the cDNA sequence with the exception that the A-chain amino terminal was pyroglutamic acid. The migration of rhRlx upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis was consistent with a monomeric structure, and the identity of the band was demonstrated by immunoblotting.  相似文献   

4.
The interactions of proteins with reactive oxygen species (ROS) may result in covalent modifications of amino acid residues in proteins, formation of protein-protein cross-linkages, and oxidation of the protein backbone resulting in protein fragmentation. In an attempt to elucidate the products of the metal-catalyzed oxidation of the human (H) and mouse (M) (1-10H), (1-10M), (1-16H) and (1-16M) fragments of beta-amyloid peptide, the high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) methods and Cu(II)/H(2)O(2) as a model oxidizing system were employed. Peptide solution (0.50 mM) was incubated at 37 degrees C for 24 h with metal:peptide:H(2)O(2) molar ratio 1:1:1 for the (1-16H), (1-16M) fragments, and 1:1:2 for the (1-10H), (1-10M) peptides in phosphate buffer, pH 7.4. Oxidation targets for all peptide studied are the histidine residues coordinated to the metal ions. For the (1-16H) peptide are likely His(13) and/or His(14), and for the (1-16M) fragment His(6) and/or His(14), which are converted to 2-oxo-His. Metal-binding residue, the aspartic acid (D(1)) undergoes the oxidative decarboxylation and deamination to pyruvate. The cleavages of the peptide bonds by either the diamide or alpha-amidation pathways were also observed.  相似文献   

5.
The one-electron oxidation of methionine (Met) plays an important role in the redox reactions of Met in peptides and proteins under conditions of oxidative stress, e.g., during the metal-catalyzed oxidation of beta-amyloid peptide (beta A). However, little information is available with regard to mechanisms and product formation during the metal-catalyzed oxidation of Met. Here, we demonstrate that two-electron oxidation of Met in Fenton reactions, carried out aerobically by [Fe(II)(EDTA)](2-) and H(2)O(2) (EDTA = ethylenediaminetetra acetate) is the consequence of two consecutive one-electron transfer reactions carried out by either free or complexed hydroxyl radicals, followed by the reaction of an intermediary sulfur-nitrogen bonded radical cation (sulfuranyl radical) with O(2). The model peptide Met-Met represents an ideal substrate for these investigations as its one-electron oxidation, followed by reaction with molecular oxygen, produces unique intermediates, azasulfonium diastereomers, which can be chemically isolated before hydrolysis to sulfoxide occurs.  相似文献   

6.
Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson’s disease. The interaction of copper ions with the N-terminal region of AS promotes its amyloid aggregation and metal-catalyzed oxidation has been proposed as a plausible mechanism. The AS(1–6) fragment represents the minimal sequence that models copper coordination to this intrinsically disordered protein. In this study, we evaluated the role of methionine residues Met1 and Met5 in Cu(II) coordination to the AS(1–6) fragment, and in the redox activity of the Cu–AS(1–6) complex. Spectroscopic and electronic structure calculations show that Met1 may play a role as an axial ligand in the Cu(II)–AS(1–6) complex, while Met5 does not participate in metal coordination. Cyclic voltammetry and reactivity studies demonstrate that Met residues play an important role in the reduction and reoxidation processes of this complex. However, Met1 plays a more important role than Met5, as substitution of Met1 by Ile decreases the reduction potential of the Cu–AS(1–6) complex by ~80 mV, causing a significant decrease in its rate of reduction. Reoxidation of the complex by oxygen results in oxidation of the Met residues to sulfoxide, being Met1 more susceptible to copper-catalyzed oxidation than Met5. The sulfoxide species can suffer elimination of methanesulfenic acid, rendering a peptide with no thioether moiety, which would impair the ability of AS to bind Cu(I) ions. Overall, our study underscores the important roles that Met1 plays in copper coordination and the reactivity of the Cu–AS complex.  相似文献   

7.
In this study the pH-dependent structural changes of reduced spinach plastocyanin were investigated using perturbed angular correlation (PAC) of γ-rays and dynamic light scattering (DLS). PAC data of Ag-substituted plastocyanin indicated that the coordinating ligands are two histidine residues (His37, His87) and a cysteine residue (Cys84) in a planar configuration, whereas the methionine (Met92) found perpendicular to this plane is not a coordinating ligand at neutral pH. Two slightly different conformations with differences in the Cys–metal ion–His angles could be observed with PAC spectroscopy. At pH 5.3 a third coordination geometry appears which can be explained as the absence of the His87 residue and the coordination of Met92 as a ligand. With DLS the aggregation of reduced plastocyanin could be observed below pH 5.3, indicating that not only the metal binding site but also the aggregation properties of the protein change upon pH reduction. Both the structural changes at the metal binding site and the aggregation are shown to be reversible. These results support the hypothesis that the pH of the thylakoid lumen has to remain moderate during steady-state photosynthesis and indicate that low pH induced aggregation of plastocyanin might serve as a regulatory switch for photosynthesis.  相似文献   

8.
Oxidative stress is believed to play a central role in the pathogenesis of prion diseases, a group of fatal neurodegenerative disorders associated with a conformational change in the prion protein (PrP(C)). The precise physiological function of PrP(C) remains uncertain; however, Cu(2+) binds to PrP(C) in vivo, suggesting a role for PrP(C) in copper homeostasis. Here we examine the oxidative processes associated with PrP(C) and Cu(2+). (1)H NMR was used to monitor chemical modifications of PrP fragments. Incubation of PrP fragments with ascorbate and CuCl(2) showed specific metal-catalyzed oxidation of histidine residues, His(96/111), and the methionine residues, Met(109/112). The octarepeat region protects His(96/111) and Met(109/112) from oxidation, suggesting that PrP(90-231) might be more prone to chemical modification. We show that Cu(2+/+) redox cycling is not 'silenced' by Cu(2+) binding to PrP, as indicated by H(2)O(2) production for full-length PrP. Surprisingly, although detection of Cu(+) indicates that the octarepeat region of PrP is capable of reducing Cu(2+) even in the absence of ascorbate, H(2)O(2) is not generated unless ascorbate is present. Full-length PrP and fragments cause a dramatic reduction in detectable hydroxyl radicals in an ascorbate/Cu(2+)/O(2) system; however, levels of H(2)O(2) production are unaffected. This suggests that PrP does not affect levels of hydroxyl radical production via Fentons cycling, but the radicals cause highly localized chemical modification of PrP(C).  相似文献   

9.
The primary structure of porcine pancreatic isophospholipase A2 (EC 3.1.1.4) has been investigated. The sequence of procine isophospholipase differs from the sequence of porcine phospholipasy by four substitutions; viz. Ala12 leads to Thr; His17 leads to Asp leads to; Met20 leads to Leu and Glu71 leads to Asn.  相似文献   

10.
Previously we have shown that the COOH-terminal 100 residues (A4CT) of the amyloid protein precursor (APP), which carry the sequence of the amyloid beta A4 protein of Alzheimer's disease at N-terminal position, form highly insoluble aggregates if expressed in the rabbit reticulocyte lysate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Dyrks, T., Weidemann, A., Multhaup, G., Salbaum, J.M., Lemaire, H.-G., Kang, J., Müller-Hill, B., Masters, C. L., and Beyreuther, K. (1988) EMBO J. 7, 949-957). Here we report that aggregation of this COOH-terminal APP fragment A4CT and also of beta A4 itself depends on additional factors. In contrast to the reticulocyte expression system, expression of A4CT and beta A4 in the wheat germ expression system resulted in only monomeric forms. We have identified the factors which are capable of transforming both soluble A4CT and beta A4 into insoluble and aggregating molecules. Monomeric A4CT or beta A4 expressed in the wheat germ lysate could be transformed into aggregating molecules by the addition of metal-catalyzed oxidation systems. The addition of radical scavengers such as ascorbic acid, trolox, and amino acids prevented the aggregation process induced by the radical initiators. Thus, the aggregation of amyloidogenic APP fragments if analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis requires amino acid oxidation and protein cross-linking induced by radical generation systems.  相似文献   

11.
Recent studies have shown that the "calcium-sensor" protein calmodulin (CaM) suffers an age-dependent oxidation of methionine (Met) to methionine sulfoxide (MetSO) in vivo. However, MetSO did not accumulate on the Met residues that show the highest solvent-exposure. Hence, the pattern of Met oxidation in vivo may give hints as to which reactive oxygen species and oxidation mechanisms participate in the oxidation of this important protein. Here, we have exposed CaM under a series of different reaction conditions (pH, [Ca(2+)], [KCl]) to various biologically relevant reactive oxygen species and oxidizing systems (peroxides, HOCl, peroxynitrite, singlet oxygen, metal-catalyzed oxidation, and peroxidase-catalyzed oxidation) to investigate whether one of these systems would lead to an oxidation pattern of CaM similar to that observed in vivo. However, generally, these oxidizing conditions led to a preferred or exclusive oxidation of the C-terminal Met residues, in contrast to the oxidation pattern of CaM observed in vivo. Hence, none of the employed oxidizing conditions was able to mimic the age-dependent oxidation of CaM in vivo, indicating that other, yet unidentified oxidation mechanisms may be important in vivo. Some oxidizing species showed a quite-remarkable diastereoselectivity for the formation of either L-Met-D-SO or L-Met-L-SO. Diastereoselectivity was dependent on the nature of the oxidizing species but was less a function of the location of the target Met residue in the protein. In contrast, diastereoselective reduction of L-Met-D-SO by protein methionine sulfoxide reductase (pMSR) was efficient regardless of the position of the L-Met-D-SO residue in the protein and the presence or absence of calcium. With only the L-Met-D-SO diastereomer being a substrate for pMSR, any preferred formation of L-Met-L-SO in vivo may cause the accumulation of MetSO unless the oxidized protein is substrate for (accelerated) protein turnover.  相似文献   

12.
The oxidation by ferricyanide of the dimeric (HbI) and tetrameric (HbII) hemoglobins from the bivalve mollusc Scapharca inaequivalvis has been studied in static and kinetic experiments. Both hemoglobins give rise to hemichromes as stable oxidation products.Oxidation of deoxyHbI yields a hemichrome by a simple bimolecular process. No intermediate Met form can be detected during the reaction even in rapid mixing experiments. The HbI hemichrome undergoes a reversible pH-dependent dissociation into monomers. A simple model has been proposed to account for the linkage between proton binding and subunit dissociation.In the case of tetrameric HbII, oxidation yields an intermediate Met form. Thus, the kinetics of the oxidation reaction are always biphasic; the fast reaction is a bimolecular process and yields the Met derivative. The slow reaction is a monomolecular process and corresponds to the conversion of the Met form into the hemichrome: its rate is independent of the state of ligation of the ferrous protein and decreases with increase of pH. The HbII hemichrome is tetrameric when newly formed: it tends to dissociate into lower molecular weight species with the same optical properties. The rate of dissociation is relatively fast at neutral pH (t12 ≈ 12 min) and markedly less at alkaline pH values.The HbI and HbII hemichromes are reduced by dithionite yielding the spectra of the native deoxygenated proteins: in the case of HbII, the tetrameric structure of the native protein is re-acquired.  相似文献   

13.
The C-peptide of ribonuclease A (residues 1 to 13) is obtained by cyanogen bromide cleavage at Met13, which converts methionine to a mixture of homoserine lactone (giving C-peptide lactone) and homoserine carboxylate (giving C-peptide carboxylate). The helix-forming properties of C-peptide lactone have been reported. The helix is formed intramolecularly in aqueous solution, is stabilized at low temperatures (0 to 20 °C) and also by a pH-dependent interaction between sidechains. The C-peptide lactone helix is about 1000-fold more stable than expected from “host-guest” data for helix formation in synthetic polypeptides.Here we report the failure of C-peptide carboxylate to form an α-helix in comparable conditions. Formation of a salt-bridge between the α-COO? group and the imidazolium ring of His12+ appears to be responsible for the suppression of helix formation. The presence of the Hse13-COO? … His12+ salt-bridge in C-peptide carboxylate is shown by 1H nuclear magnetic resonance titration of the amide proton resonances of His12 and Hse13, and is expected from model peptide studies. The most probable reason why C-peptide carboxylate does not form an α-helix is that the Hse13-COO? … His12+ salt-bridge competes successfully with a helix stabilizing salt-bridge (Glu9? … His12+).S-peptide (residues 1 to 20 of ribonuclease A) does form an α-helix with properties similar to those of the C-peptide (lactone) helix, which shows that the lactone ring of C-peptide lactone is not needed for helix formation.These results support the hypothesis that a Glu9? … His12+ salt-bridge stabilizes the C-peptide (lactone) helix, and they show that specific interactions between side-chains can be important in preventing as well as in promoting α-helix formation.  相似文献   

14.
Oxidation of methionine (Met) residues is one of the most common protein degradation pathways. Two Met residues, Met256 and Met432, of a recombinant fully human monoclonal IgG1 antibody have been shown to be susceptible to oxidation. Met256 and Met432 are located in the antibody CH2-CH3 interface and in close proximity to protein A and protein G binding sites. The effect of oxidation of these susceptible Met residues on the binding to protein A and protein G was investigated in the current study. Incubation of the antibody with 5% tert-butyl hydroperoxide (tBHP) resulted in a nearly complete oxidation of Met256 and Met432, while incubation with 1% tBHP resulted in mixed populations of the antibody with different degrees of Met oxidation. Oxidation of Met256 and Met432 resulted in earlier elution of the antibody from protein A and protein G columns when eluted with a gradient of decreasing pH. Analysis by ELISA and surface plasmon resonance (SPR) revealed decreased binding affinity of the oxidized antibody to protein A and protein G. It is therefore concluded that oxidation of the Met256 and Met432 residues of the recombinant monoclonal antibody altered its interaction with protein A and protein G resulting in a decrease in binding affinity.  相似文献   

15.
Chu JW  Yin J  Wang DI  Trout BL 《Biochemistry》2004,43(44):14139-14148
The relationship between the conformational properties of 1-34 human parathyroid hormone [hPTH(1-34)] and the oxidation of its methionine residues, Met8 and Met18, by hydrogen peroxide is analyzed as a function of pH by measuring the rates of oxidation and by performing MD simulations with an explicit representation of water molecules. Between pH 4 and pH 8, both Met8 and Met18 have nearly pH independent rates of oxidation, and Met18 is oxidized at a rate that is 90-100% of that of freeMet and 10-20% faster than that of Met8. We also found that average 2SWCNs calculated from MD simulations correlate well to the rates of oxidation of Met8 and Met18. The use of 2SWCNs is based on the mechanism that we proposed, the water-mediated mechanism, in which water molecules stabilize the transition state via specific interactions, but the transfer of protons (acid-catalyzed mechanism) does not play a role [Chu, J. W., and Trout, B. L. (2004) J. Am. Chem. Soc. 126 (3), 900-908]. Only at very low pH values, pH 1 for the oxidation of freeMet, does the acid-catalyzed oxidation mechanism become important. For the oxidation of Met8 and Met18 in hPTH(1-34), the acid-catalyzed mechanism becomes significant at a higher pH value, pH 2, probably due to the proximity of nearby acidic residues to Met8 (Glu4) and Met18 (Glu22). In this study, we have demonstrated that the chemistry of oxidation and the structure of polypeptides can be correlated via a detailed understanding of the reaction mechanism, appropriate sampling of configurational space, and a suitable choice of a structural property, water coordination number.  相似文献   

16.
Umecyanin (UMC) from horseradish root belongs to the stellacyanin subclass of the phytocyanins, a family of plant cupredoxins. The protein possesses the typical type-1 His(2)Cys equatorial ligand set at its mononuclear copper site but has an axial Gln ligand in place of the usual weakly coordinated Met of the plantacyanins, uclacyanins, and most other cupredoxins. UMC exhibits, like other phytocyanins, altered visible, EPR, and paramagnetic (1)H NMR spectra at elevated pH values and also a modified reduction potential. This alkaline transition occurs with a pK(a) of approximately 10 [Dennison, C., Lawler, A. T. (2001) Biochemistry 40, 3158-3166]. In this study, we investigate the alkaline transition by complementary optical spectroscopic techniques. The contemporary use of absorption, fluorescence, dynamic light scattering, and resonance Raman spectroscopy allows us to demonstrate that the alkaline transition induces a reorganization of the protein and that the overall size of UMC increases, but protein aggregation does not occur. The transition does not have a dramatic influence on the active-site environment of UMC, but there are subtle alterations in the Cu site geometry. Direct evidence for the strengthening of a Cu-N(His) bond is presented, which is in agreement with the hypothesis that the deprotonation of the N(epsilon2)H moiety of one of the His ligands is the cause of the alkaline transition. A weakening of the Cu-S(Cys) bond is also observed which, along with a weakened axial interaction, must be due to the enhanced Cu-N(His) interaction.  相似文献   

17.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. We have previously established that oxidation of all four methionine residues in alpha-synuclein (to the sulfoxide, MetO) inhibits fibrillation of this protein in vitro and that the MetO protein also inhibits fibrillation of unmodified alpha-synuclein. Here we show that the degree of inhibition of fibrillation by MetO alpha-synuclein is proportional to the number of oxidized methionines. This was accomplished be selectively converting Met residues into Leu, prior to Met oxidation. The results showed that with one oxidized Met the kinetics of fibrillation were comparable to those for the control (nonoxidized), and with increasing numbers of methionine sulfoxides the kinetics of fibrillation became progressively slower. Electron microscope images showed that the fibril morphology was similar for all species examined, although fewer fibrils were observed with the oxidized forms. The presence of zinc was shown to overcome the Met oxidation-induced inhibition. Interestingly, substitution of Met by Leu led to increased propensity for aggregation (soluble oligomers) but slower formation of fibrils.  相似文献   

18.
The Met16Phe mutant of the type 1 copper protein pseudoazurin (PACu), in which a phenyl ring is introduced close to the imidazole moiety of the His81 ligand, has been characterized. NMR studies indicate that the introduced phenyl ring is parallel to the imidazole group of His81. The mutation has a subtle effect on the position of the two S(Cys)-->Cu(II) ligand-to-metal charge transfer bands in the visible spectrum of PACu(II) and a more significant influence on their intensities resulting in a A(459)/A(598) ratio of 0.31 for Met16Phe as compared to a A(453)/A(594) ratio of 0.43 for wild-type PACu(II) at pH 8. The electron paramagnetic resonance spectrum of the Met16Phe variant is more axial than that of the wild-type protein, and the resonance Raman spectrum of the mutant exhibits subtle differences. A C(gamma)H proton of Met86 exhibits a much smaller hyperfine shift in the paramagnetic (1)H NMR spectrum of Met16Phe PACu(II) as compared to its position in the wild-type protein, which indicates a weaker axial Cu-S(Met86) interaction in the mutant. The Met16Phe mutation results in an approximately 60 mV increase in the reduction potential of PACu. The pK(a) value of the ligand His81 decreases from 4.9 in wild-type PACu(I) to 4.5 in Met16Phe PACu(I) indicating that the pi-pi contact with Phe16 stabilizes the Cu-N(His81) interaction. The Met16Phe variant of PACu has a self-exchange rate constant at pH 7.6 (25 degrees C) of 9.8 x 10(3) M(-)(1) s(-)(1) as compared to the considerably smaller value of 3.7 x 10(3) M(-)(1) s(-)(1) for the wild-type protein under identical conditions. The enhanced electron transfer reactivity of Met16Phe PACu is a consequence of a lower reorganization energy due to additional active site rigidity caused by the pi-pi interaction between His81 and the introduced phenyl ring.  相似文献   

19.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

20.
Li C  Takazaki S  Jin X  Kang D  Abe Y  Hamasaki N 《Biochemistry》2006,45(39):12117-12124
In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号