首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria from beef heart have been partially depleted of coenzyme Q by pentane extraction. It has been found that lipid peroxidation induced by an adriamycin-iron complex proceeds at a higher rate in this preparation than in coenzyme Q reincorporated mitochondria. Moreover in coenzyme Q depleted mitochondria both NADH and succinate oxidase activities result more affected. These observations indicate that endogenous coenzyme Q can effectively protect mitochondria from membrane lipid oxidative damage induced by adriamycin-iron and can reduce the inactivation of NADH and succinate oxidases.  相似文献   

2.
Although duroquinone had little effect upon NADH oxidation in neutral lipid depleted mitochondria, durohydroquinone was oxidized by ETP at a rate sensitive to antimycin A. Fractionation of mitochondria into purified enzyme systems showed durohydroquinone: cytochromec reductase to be concentrated in NADH: cytochromec reductase, absent in succinate:cytochromec reductase, and decreased in reduced coenzyme Q:cytochromec reductase. Durohydroquinone oxidation could be restored by recombining reduced coenzyme Q:cytochromec reductase with NADH:coenzyme Q reductase. Pentane extraction had no effect upon either durohydroquinone or reduced coenzyme Q10 oxidation, indicating lack of a quinone requirement between cytochromesb andc. Both chloroquine diphosphate and acetone (96%) treatment irreversibly inhibited NADH but not succinate oxidation. Neither reagents had any effect upon durohydroquinone oxidation but both inhibited reduced coenzyme Q10 oxidation 50%, indicating a site of action between Q10 and duroquinone sites. Loss of chloroquine sensitive reduced coenzyme Q10 oxidation after acetone extraction suggests two sites for Q10 before cytochromeb.  相似文献   

3.
SYNOPSIS. Mitochondrial and supernatant fractions were isolated from Crithidia fasciculata by grinding with neutral alumina and differential centrifugation. Supernatant fractions contained at least 2 NAD-linked enzymes: an α-glycerophosphate dehydrogenase and a malate dehydrogenase. The properties of these enzymes were investigated polarographically with phenazine ethosulfate acting as electron acceptor. Agaricic acid, cinnamic acid and p-NO2-cinnamic acid were specific inhibitors of the α-glycerophosphate dehydrogenase. Succinate, malate, DL-α-glycerophosphate and NADH stimulated respiration of mitochondrial preparations; O2 uptake was greatest with succinate. KCN and antimycin A inhibited succinate respiration more than α-glycerophosphate respiration. Amytal did not affect succinate, α-glycerophosphate or NADH oxidation. The trypanocide suramin inhibited mitochondrial respiration at least 77% with each substrate. The relevance of these results to other members of the Trypanosomatidae is discussed.  相似文献   

4.
The Coenzyme Q homologs having short isoprenoid chains are much less efficient than the higher homologs in restoring NADH oxidation in pentane-extracted lyophilized beef heart mitochondria; they have however high restoring activity for succinate oxidation. The same pattern is observed in pentane extracted submitochondrial particles ETP only if the quinones are added to detergent-treated membranes, showing that in ETP there is a decreased accessibility of the long chain quinones in comparison with the lower homologs. In intact mitochondria and ETP, CoQ3 inhibits NADH oxidation while leaving succinate oxidation unaffected; the inhibition of NADH oxidation by CoQ3 is not reversed by serum albumin but is reversed by CoQ7, particularly when the membrane has been previously “opened” with deoxycholate. CoQ3 may accept electrons from NADH in cyanide-inhibited ETP, allowing coupling at the first phosphorylation site as shown by the quenching of the fluorescence of atebrine. The mechanism of CoQ3 inhibition is probably related to its insufficient rate of reoxidation by the following segment of the respiratory chain when it has been reduced by NADH dehydrogenase.  相似文献   

5.
The effect of various agents on the activation of succinate dehydrogenase in cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria and in sonicated particles has been investigated. Reduced coenzyme Q10, inosine diphosphate, inosine triphosphate, acid pH, and anions activate the enzyme in mitochondria from higher plants in the same manner as in mammalian preparations. Significant differences have been detected in the behavior of plant and animal preparations in the effects of ATP, ADP, NADH, NAD-linked substrates, and of 2, 4-dinitrophenol on the state of activation of the dehydrogenase. In mammalian mitochondria ATP activates, whereas ADP does not, and the ATP effect is shown only in intact mitochondria. In mung bean and cauliflower mitochondria, both ATP and ADP activate and the effect is also shown in sonicated and frozen-thawed preparations. In sonicated mung bean mitochondria NADH causes complete activation, as in mammalian submitochondrial particles, but in sonicated cauliflower mitochondria activation by NADH is incomplete, as is also true of intact, anaerobic cauliflower mitochondria. Moreover, neither NAD-linked substrates nor a combination of these with NADH can fully activate the enzyme in cauliflower mitochondria. In contrast to mammalian mitochondria, succinate dehydrogenase is not deactivated in cauliflower or mung beam mitochondria under the oxidized conditions brought about by uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.  相似文献   

6.
The effects of fusaric acid, a phytotoxin produced byFusarium pathogens, on the metabolism of isolated maize root mitochondria and on maize seed germination and seedling growth were investigated. The phytotoxin inhibited basal and coupled respiration when succinate and α-ketoglutarate were the substrates. Coupled respiration dependent on NADH was inhibited, but basal respiration was not. Consistently, succinate cytochromec oxidoreductase activity was decreased whereas NADH cytochromec oxidoreductase was not affected. The ATPase activities of carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone stimulated mitochondria and of freeze-thawing disrupted mitochondria were inhibited. These results indicate that the phytotoxin impairs the respiratory activity of maize mitochondria by at least three mechanisms: (1) it inhibits the flow of electrons between succinate dehydrogenase and coenzyme Q, (2) it inhibits ATPase/ATP-synthase activity and (3) it possibly inhibits α-ketoglutarate dehydrogenase. Seed germination and seedling growth were also affected by fusaric acid with the most pronounced effect on root development. These effects can possibly contribute to the diseases ofFusarium- infected plants  相似文献   

7.
The fungicide zinc dimethyldithiocarbamate (ziram) is a sulfhydryl reagent which inhibits specifically the growth of the yeast Saccharomyces cerevisiae on nonfermentable substrates. In isolated mitochondria, the uncoupled as well as the state 3 oxidations of succinate, α-ketoglutarate, ethanol, and malate plus pyruvate are sensitive to ziram concentrations of 10 to 30 μm. The oxidations of isocitrate, of external NADH, of α-glycerophosphate, and of ascorbate plus tetramethylphenylenediamine exhibit a lower sensitivity to ziram. Succinate, α-ketoglutarate, and pyruvate dehydrogenases activities are 50% inhibited by concentration of ziram lower than 10 μm. At the same concentrations, neither the mitochondrial transports of succinate, ADP, or phosphate nor oxidative phosphorylation and adenosine triphosphatase activities are modified. The kinetic study of the inhibition by ziram of succinate dehydrogenase activity shows that ziram is noncompetitive with succinate and produces sigmoidal inhibitions of state 3 and of uncoupled oxidation of succinate by intact mitochondria. Inhibition of succinate:phenazine methosulfate oxidoreductase activity yields exponential kinetics. However sigmoidal-type inhibition is observed when succinate dehydrogenase activity is stimulated by ATP.  相似文献   

8.
SYNOPSIS. The occurrence and levels of activity of various enzymes of carbohydrate catabolism in culture forms (promastigotes) of 4 human species of Leishmania (L. brasiliensis, L. donovani, L. mexicana, and L. tropica) were compared. These organisms possess enzymes of the Embden-Meyerhof pathway but lack lactate dehydrogenase. No evidence could be found for the production of lactic acid by growing cultures and lactic acid could not be detected either in cell-free preparations or after incubation of cell-free extracts with pyruvate and NADH under appropriate conditions. All 4 species possess α-glycerophosphate dehydrogenase and α-glycerophosphate phosphatase which together could regenerate NAD, thus compensating for the absence of lactate dehydrogenase. The oxidative and nonoxidative reactions of the hexose monophosphate pathway are present in all 4 species. Cell-free extracts have pyruvate dehydrogenase activity which allows the entry of pyruvate into and its subsequent oxidation through the tricarboxylic acid cycle. All enzymes of this cycle, including a thiamine pyrophosphate dependent α-ketoglutarate dehydrogenase are present. Both NAD and NADP-linked malate dehydrogenase activities are present. The isocitrate dehydrogenase is NADP specific. There is an active glutamate dehydrogenase which could compete with α-ketoglutarate dehydrogenase for the common substrate (α-ketoglutarate). Replenishment of C4 acids is accomplished by heterotrophic CO2 fixation catalyzed by pyruvate carboxylase. All 4 species have high levels of NADH oxidase activity. Several enzymes thus far not found in any species of Leishmania have been demonstrated. These are: phosphoglucose isomerase, triose phosphate isomerase, fructose-1, 6-diphosphatase, 3-phosphoglycerate kinase, enolase, α-glycerophosphate dehydrogenase, α-glycerophosphate phosphatase, pyruvate dehydrogenase complex, citrate synthase, aconitase, α-ketoglutarate dehydrogenase, glutamate dehydrogenase, and NADH oxidase.  相似文献   

9.
Reduced and oxidized coenzyme Q10 (Q10H2 and Q10) in guinea-pig liver mitochondria were rapidly extracted and determined by high-performance liquid chromatography (HPLC). The percentages of Q10H2 as compared to the total (sum of Q10 and Q10H2) were increased by the addition of respiratory substrates such as succinate, malate and β-hydroxybutyrate (State 4). The levels of Q10H2 in State 4 were increased more extensively with electron-transport inhibitors such as KCN, NaN3 and antimycin A. These results indicate that the method for determining Q10H2 and Q10 by HPLC is quite useful for investigation of the physiological function of coenzyme Q in mitochondria and other organelles. The reduced and oxidized coenzyme Q levels of rat liver mitochondria, which contain both coenzyme Q9 and coenzyme Q10, were measured simultaneously. The results suggest that coenzymes Q9 and Q10 play a similar role as an electron carriers. The liver microsomes of guinea-pig contained approx. 133 nmol total coenzyme Q10 per g protein. The Q10H2 levels of microsomes were increased from 46.5 to 67.5 and 64.8% with NADH and NADPH, respectively. The plasma levels of total coenzyme Q were 0.92 μg/ml for man, 0.35 μg/ml for guinea-pig and 0.27 μg/ml for rat. The reduced coenzyme Q were also present in those plasma samples. The levels of reduced coenzyme Q were 51.1, 48.9 and 65.3%, respectively.  相似文献   

10.
H.J. Harmon  F.L. Crane 《BBA》1976,440(1):45-58
The topography of the inner mitochondrial membrane was investigated using inhibitors of electron transport on preparations of beef heart mitochondria and electron transport particles of opposite orientation. Reductions of juglone, ferricyanide, indophenol, coenzyme Q, duroquinone, and cytochrome c by NADH are inhibited to different extents on both sides of the membrane by the impermeant hydrophilic chelators bathophenanthroline sulfonate and orthophenanthroline. The extent of inhibition for each acceptor increased in the order given. At least two chelator-sensitive sites are present on each membrane face between the flavoprotein and coenzyme Q and a chelator-sensitive site is present on the matrix face between the sites of coenzyme Q and duroquinone interaction. Duroquinol oxidation in mitochondria only is stimulated by bathophenanthroline sulfonate. Juglone reduction is stimulated in electron transport particles (only) by p-hydroxymercuribenzenesulfonate, but after mercurial treatment, juglone reduction in both particles and mitochondria is more sensitive to bathophenanthroline sulfonate.Succinate dehydrogenase components are inhibited by hydrophilic orthophenanthroline or bathophenanthroline sulfonate in mitochondria only. Electron flow between the dehydrogenases of succinate and NADH occurs via a chelator-sensitive site located on the matrix face of the membrane. Inter-complex electron flow is prevented by rotenone or thenoyltrifluoroacetone. The lack of succinate-indophenol reductase inhibition by bathophenanthroline sulfonate in the presence of rotenone or thenoyltrifluoroacetone indicates that the rotenone-sensitive site may be located on the matrix face and demonstrates that electrons flow between the NADH and succinate dehydrogenases via a hydrophilic chelator and rotenone-thenoyltrifluoroacetone-sensitive site on the matrix face of the membrane. Inhibition by hydrophilic chelators only in mitochondria indicates that succinate dehydrogenase as well as NADH dehydrogenase has a transmembranous orientation.  相似文献   

11.
A succinate-coenzyme Q reductase (complex II) was isolated in highly purified form from Ascaris muscle mitochondria by detergent solubilization, ammonium sulfate fractionation and gel filtration on a Sephadex G-200 column. The enzyme preparation catalyzes electron transfer from succinate to coenzyme Q1 with a specific activity of 1.2 mumol coenzyme Q1 reduced per min per mg protein at 25 degrees C. The isolated complex II is essentially free of NADH-ferricyanide reductase, reduced CoQ2-cytochrome c reductase and cytochrome c oxidase and consists of four major polypeptides with apparent molecular weights of 66 000, 27 000, 12 000 and 11 000 and two minor ones with Mr of 36 000 and 16 000. The complex II contained cytochrome b-558, a major constituent cytochrome of Ascaris mitochondria, at a concentration of 3.6 nmol per mg protein, but neither other cytochromes nor quinone. The cytochrome b-558 in the complex II was reduced with succinate. In the presence of Ascaris NADH-cytochrome c reductase (complex I-III) (Takamiya, S., Furushima, R. and Oya, H. (1984) Mol. Biochem. Parasitol. 13, 121-134), the cytochrome b-558 in complex II was also reduced with NADH and reoxidized with fumarate. These results suggest the cytochrome b-558 to function as an electron carrier between NADH dehydrogenase and succinate dehydrogenase in the Ascaris NADH-fumarate reductase system.  相似文献   

12.
Idebenone (IDE), a synthetic analog of coenzyme Q, strongly activates glycerol phosphate (GP) oxidation in brown adipose tissue mitochondria. GP oxidase, GP cytochrome c oxidoreductase and GP dehydrogenase activities were all significantly stimulated by 13 μM IDE. Substituted derivatives of IDE acetyl- and methoxyidebenone had similar activating effects. When succinate was used as substrate, no activation by IDE could be observed. The activation effect of IDE could be explained as release of the inhibition of glycerol phosphate dehydrogenase by endogenous free fatty acids. NADH oxidoreductase activity and oxidation of NADH-dependent substrates were inhibited by IDE. The extent of the inhibition and IDE concentration dependence varied when various substrates were tested, being highest for pyruvate and lowest for 2-oxoglutarate. This study thus showed that the effect of IDE on various mitochondrial enzymes is very different and thus its therapeutic use should take into account its specific effect on various mitochondrial dehydrogenases in relation to particular defects of mitochondrial respiratory chain.  相似文献   

13.
Studies of respiration on glucose in procyclic Trypanosoma congolense in the presence of rotenone, antimycin, cyanide, salicylhydroxamic acid and malonate have indicated the presence of NADH dehydrogenase, cytochrome b-c1, cytochrome aa3, trypanosome alternate oxidase and NADH fumarate reductase/succinate dehydrogenase pathway that contributes electrons to coenzyme Q of the respiratory chain. The rotenone sensitive NADH dehydrogenase, the trypanosome alternate oxidase, and cytochrome aa3 accounted for 24.5 +/- 6.5, 36.2 +/- 4.2 and 54.1 +/- 5.5% respectively of the total respiration. Activities of lactate dehydrogenase, NAD(+)-linked malic enzyme and pyruvate kinase were less than 6 nanomoles/min/mg protein suggesting that they play a minor role in energy metabolism of the parasite. Phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, succinate dehydrogenase, NADP(+)-linked malic enzyme, NADH fumarate reductase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase and glycerol kinase on the other hand had specific activities greater than 60 nanomoles/min/mg protein. These enzyme activities could account for the production of pyruvate, acetate, succinate and glycerol. The results further show that the amount of glycerol produced was 35-48% of the combined total of pyruvate, acetate and succinate produced. It is apparent that some of the glycerol 3-phosphate produced in glycolysis in the presence of salicylhydroxamic acid is dephosphorylated to form glycerol while the rest is oxidised via cytochrome aa3 to form acetate, succinate and pyruvate.  相似文献   

14.
L Clejan  D S Beattie 《Biochemistry》1986,25(24):7984-7991
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase but had comparable amounts of cytochromes b and c1 as wild-type mitochondria. Addition of succinate to the mutant mitochondria resulted in a slight reduction of cytochrome b; however, the subsequent addition of antimycin resulted in a biphasic reduction of cytochrome b, leading to reduction of 68% of the total dithionite-reducible cytochrome b. No "red" shift in the absorption maximum was observed, and no cytochrome c1 was reduced. The addition of either myxothiazol or alkylhydroxynaphthoquinone blocked the reduction of cytochrome b observed with succinate and antimycin, suggesting that the reduction of cytochrome b-562 in the mitochondria lacking coenzyme Q may proceed by a pathway involving cytochrome b at center o where these inhibitors block. Cyanide did not prevent the reduction of cytochrome b by succinate and antimycin the the mutant mitochondria. These results suggest that the succinate dehydrogenase complex can transfer electrons directly to cytochrome b in the absence of coenzyme Q in a reaction that is enhanced by antimycin. Reduced dichlorophenolindophenol (DCIP) acted as an effective bypass of the antimycin block in complex III, resulting in oxygen uptake with succinate in antimycin-treated mitochondria. By contrast, reduced DCIP did not restore oxygen uptake in the mutant mitochondria, suggesting that coenzyme Q is necessary for the bypass. The addition of low concentrations of DCIP to both wild-type and mutant mitochondria reduced with succinate in the presence of antimycin resulted in a rapid oxidation of cytochrome b perhaps by the pathway involving center o, which does not require coenzyme Q.  相似文献   

15.
The systemic fungicide carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide) at 100 mum inhibited succinate cytochrome c reductase in mitochondria from Ustilago maydis and Saccharomyces cerevisiae. It did not have any effect on reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase. Succinate coenzyme Q reductase was also inhibited, but NADH coenzyme Q reductase was not. When dichlorophenolindophenol (DCIP) was used as the terminal acceptor of electrons from the oxidation of succinate, carboxin was very effective in inhibiting succinate-DCIP reductase. Carboxin was inhibitory to succinic dehydrogenase assayed with phenazine methosulfate plus DCIP when intact mitochondria were used as the enzyme source but not when solubilized enzyme was used. The main site of action of carboxin, therefore, appears to lie between succinate and coenzyme Q. The dioxide analogue of carboxin was also effective in inhibiting succinate-cytochrome c reductase, succinate-coenzyme Q reductase, or succinate-DCIP reductase, whereas the monoxide analogue was less effective in inhibiting these enzymes.  相似文献   

16.
2,6-dibromothymoquinone (DBMIB) and other coenzyme Q analogs partially inhibit electron transport and the membrane-bound Mg++ stimulated ATPase of E. coli membranes. The inhibitions by DBMIB are fully reversed by coenzyme Q6, and other analogs show partial reversal by coenzyme Q6. Electron transport reactions inhibited are NADH and lactate oxidase, NADH menadione reductase, lactate phenazinemethosulfate reductase and duroquinol oxidase. The concentrations of DBMIB required are similar for electron transport and ATPase inhibition and inhibitions are all increased by uncouplers. Electron transport and ATPase are not inhibited in a DBMIB insensitive mutant. Soluble ATPase extracted from the membranes does not show DBMIB inhibition under either high or low Mg++ conditions. Lipophilic chelators show additional inhibition over DBMIB. It appears that coenzyme Q functions at three sites in E. coli electron transport where ATPase activity is controlled. Coenzyme Q deficient mutants also show decreased electron transport and ATPase activity which is restored by coenzyme Q.  相似文献   

17.
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1 mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 μM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q1 and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q1 and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range.  相似文献   

18.
The effects of 33 quinone derivatives on mitochondrial electron transfer in yeast were examined. Twenty-two of the compounds were also tested for their effects on the growth of yeast cells. Four strong inhibitors of electron transfer were identified: 5-n-undecyl-6-hydroxy-4, 7-dioxobenzothiazole, 7-ω-cyclohexyloctyl-6-hydroxy-5,8-quinolinequinone, 7-n-hexadecyl-mercapto-6-hydroxy-5, 8-quinolinequinone, and 3-n-dodecylmercapto-2-hydroxy-1, 4-naphthoquinone. They inhibit the growth of yeast with ethanol as an energy source, but not when glucose is the energy source. The NADH oxidase activity of isolated mitochondria is 50% inhibited by these quinone derivatives at about 10?8m, or 0.5 μmol/g mitochondrial protein; 1000-fold higher concentrations do not affect electron transfer from NADH or succinate to coenzyme Q2. The effects of the inhibitors on cytochrome spectra indicate that they block electron transfer between cytochromes b and c1. A possible antagonism between these compounds and coenzyme Q at a site between cytochromes b and C1 is discussed in terms of Mitchell's “protonmotive Q cycle” hypothesis (Mitchell, P. (1976) J. Theor. Biol. 62, 327–367). 6-β-naphthylmercapto-5-chloro-2,3-dimethoxy-1,4-benzoquinone inhibits electron transfer between succinate and coenzyme Q2 or phenazine methosulfate, suggesting a site in the succinate-coenzyme Q reductase complex with a different quinone specificity from that of the site in the cytochrome bc1 complex. Seven of the quinone derivatives inhibit growth on both glucose and ethanol media, indicating that their effect is not the result of inhibition of respiration.  相似文献   

19.
The glyceollin inhibition of electron transport by isolated soybean and corn mitochondria was similar to that of rotenone, acting at site I between the internal NADH dehydrogenase and coenzyme Q. Coupled state 3 malate oxidation was inhibited by glyceollin and rotenone with apparent Ki values of about 15 and 5 micromolar, respectively. Carbonylcyanide m-chlorophenyl hydrazone uncoupled state 4 malate oxidation was also inhibited by glyceollin and rotenone, but uncoupled succinate and exogenous NADH state 4 oxidation was only slightly inhibited by both compounds. Glyceollin also inhibited ferricyanide reduction with malate as the electron donor, with an apparent Ki of 5.4 micromolar, but failed to inhibit such reduction with succinate or externally added NADH as electron donors. Glyceollin did not inhibit state 4 oxidation of malate, succinate, or exogenous NADH. Glyceollin did not act as a classical uncoupler or as an inhibitor of oxidative phosphorylation.  相似文献   

20.
1. Rat liver mitochondria were separated on the basis of their sedimentation coefficients in an iso-osmotic gradient of Ficoll–sucrose by rate zonal centrifugation. The fractions (33, each of 40ml) were collected in order of decreasing density. Fractions were analysed by spectral analysis to determine any differences in the concentrations of the cytochromes and by enzyme analyses to ascertain any differences in the activities of NADH dehydrogenase, succinate dehydrogenase and α-glycerophosphate dehydrogenase. 2. When plotted as% of the highest specific concentration, the contents of cytochrome a+a3 and cytochrome c+c1 were constant in all fractions but cytochrome b was only 65% of its maximal concentration in fraction 7 and increased with subsequent fractions. As a result, the cytochrome b/cytochrome a+a3 ratio almost doubled between fractions 7 and 25 whereas the cytochrome c+c1/cytochrome a+a3 ratio was unchanged. 3. Expression of the dehydrogenase activities as% of highest specific activity showed the following for fractions 6–26: NADH dehydrogenase activity remained fairly constant in all fractions; succinate dehydrogenase activity was 62% in fraction 6 and increased steadily to its maximum in fraction 18 and then decreased; the activity of α-glycerophosphate dehydrogenase was only 53% in fraction 6 and increased slowly to its peak in fractions 22 and 24. 4. These differences did not result from damaged or fragmented mitochondria or from microsomal contamination. 5. These results demonstrate that isolated liver mitochondria are biochemically heterogeneous. The importance of using a system for separating biochemically different mitochondria in studies of mitochondrial biogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号