首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The denaturation heat parameters of hippocampus and olfactory bulb nodulus tissues were determined. The total denaturation heat calculated from the areas of endotherms I-IX onto which the dependence deltaH = f(T) is factorized equals to 13.03 +/- 1.3 J/g for bulb nodules and 9.91 J/g for the hippocampus. It was shown that chromatin in the composition of tissues had two stages of denaturation with the following parameters: for bulb nodules: Td(VIII) = 99.4 degrees C, Qd(VIII) = 62.3 +/- 0.8 J/g DNA, Td = (IX) = 106 degrees C, Qd = 28.8 ; 0.4 J/g DNA; and for hippocampus: Td(VIII) = 95 degrees C; Qd(VIII) = 62.0 +/- 9 J/g. Td(IX) - 107 degrees C; Qd(IX) = 29.0 +/- 4.5 J/g DNA. It was established that, along with denaturation of cytoplasmatic structures, nonhistone, nuclear proteins and damage to the nuclear matrix, toluene caused the redistribution of heat between endotherms IX, VIII, VIII(I) connected with the infolding of chromatin loops and 30-nm fibers. It is supposed that toluene causes the damage to the genetic material due to not only its oxidative influence on chromatin DNA but also the disturbance of nuclear matrix structural organization and partial denaturation of nuclear proteins of non-histone origin.  相似文献   

2.
It was shown that eight stages of transition are observed in the heating process of Spirulina platensis cells in temperature range 5-140 degrees C. The first stage covers the temperature range 5-53 degrees C with maximum approximately 45 degrees C. The heat evolved in this temperature range is equal to 380 +/- 20 J/g of dry biomass, it does not change at scanning rate lower than 0.083 degrees C/min and belongs, mainly, to cell respiration in a stationary regime, in the dark. It was shown that endotherm approximately 66 degrees C belongs to denaturation of C-phycocyanin which denaturates in solutions with Td = 64.2 degrees C, deltaHd = 34.7 +/- 2.1 J/g and for it deltaHd(cal)/deltaH(V.H) is equal to 10.8 +/- 1.2. The endotherms with Td equal to 58 and 88 degrees C are connected with denaturation of phycobilisome proteins and endotherm with Td = 48 degrees C and deltaHd = 4.2J/g of dry biomass-with denaturation of protein which, apparently, is connected with cell respiration.  相似文献   

3.
The effects of ambient temperatures (T(a)) from 10 degrees to 35 degrees C on metabolism, ventilation, and oxygen extraction were examined for the southern brown bandicoot (Isoodon obesulus). Oxygen consumption (VO2) followed the pattern typical for endotherms, decreasing with increasing T(a) from 10 degrees to 25 degrees C. It did not significantly change between Ta=25 degrees and 35 degrees C (the thermoneutral zone). VO2 was approximately 2.4 times higher at Ta=10 degrees C (0.967 mL O(2) g(-1) h(-1)) compared with basal (0.410 mL O(2) g(-1) h(-1)) at Ta=30 degrees C. While the metabolic rates of the bandicoots were basal at Ta=30 degrees C, respiratory frequency (f(R)) was 24.6 breaths min(-1), tidal volume (V(T)) was 7.79 mL, minute volume (V(I)) was 191.3 mL min(-1), and oxygen extraction efficiency (EO2) was 26.8%. Increased VO2 at Ta< or =25 degrees C was associated with a large increase in V(I) due to increases in V(T) and f(R). A greater proportion of the change was due to the increase in tidal volume. EO2 was constant at approximately 26% for all T(a) up to and including 30 degrees C. At Ta=35 degrees C, EO2 decreased to 17.7%, f(R) increased to 35.6 breaths min(-1), and V(T) decreased to 7.22 mL. The metabolic and ventilatory physiology of the southern brown bandicoot are typical of an unspecialized medium-sized marsupial.  相似文献   

4.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

5.
Linker DNA bending induced by the core histones of chromatin   总被引:10,自引:0,他引:10  
J Yao  P T Lowary  J Widom 《Biochemistry》1991,30(34):8408-8414
We have previously reported that ionic conditions that stabilize the folding of long chromatin into 30-nm filaments cause linker DNA to bend, bringing the two nucleosomes of a dinucleosome into contact [Yao, J., Lowary, P. T., & Widom, J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7603-7607]. Dinucleosomes are studied because they allow the unambiguous detection of linker DNA bending through measurement of their nucleosome-nucleosome distance. Because of the large resistance of DNA to bending, the observed compaction must be facilitated by the histones. We have now tested the role of histone H1 (and its variant, H5) in this process. We find that dinucleosomes from which the H1 and H5 have been removed are able to compact to the same extent as native dinucleosomes; the transition is shifted to higher salt concentrations. We conclude that histone H1 is not essential for compacting the chromatin filament. However, H1 contributes to the free energy of compaction, and so it may select a single, ordered, compact state (the 30-nm filament, in long chromatin) from a family of compact states which are possible in its absence.  相似文献   

6.
Conditions for in vitro assembly and disassembly of Tetrahymena 14-nm filaments were investigated electron-microscopically by using a crude extract of acetone powder of the cells. The assembly conditions established are: incubation of a protein sample (2 mg/ml) in 5 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 6.6) containing 0.1 mM N alpha-tosyl-L-lysyl-chloromethane hydrochloride (TLCK), 50 mM KCl, 0.6 mM ATP, and 1.2 mM CaCl2 at 30 degrees C for 30 min. The disassembly conditions established are: dialysis of the 14-nm filament suspension (3 mg protein/ml) against Tris-acetate buffer (pH 8.2) containing 5 mM 2-mercaptoethanol, 1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), and 0.05 mM TLCK at 4 degrees C for 24 h. The assembly and disassembly were repeatable, and resulted in the exclusive retention of the 49,000-dalton protein. This clearly shows that the previously reported protein component (38,000-dalton protein : FFP-38) of the 14-nm filament is incorrect and the actual component is indeed a 49,000-dalton protein. The present research also showed that the Tetrahymena 14-nm filament bore a strong resemblance to 'intermediate filaments' of mammalian cells with respect to molecular weight, amino-acid composition of the protein component, and size and conditions for assembly and disassembly of the filament.  相似文献   

7.
Previous animal models of heat stress have been compromised by methodologies, such as restraint and anesthesia, that have confounded our understanding of the core temperature (T(c)) responses elicited by heat stress. Using biotelemetry, we developed a heat stress model to examine T(c) responses in conscious, unrestrained C57BL/6J male mice. Before heat stress, mice were acclimated for >4 wk to an ambient temperature (T(a)) of 25 degrees C. Mice were exposed to T(a) of 39.5 +/- 0.2 degrees C, in the absence of food and water, until they reached maximum T(c) of 42.4 (n = 11), 42.7 (n = 12), or 43.0 degrees C (n = 11), defined as mild, moderate, and extreme heat stress, respectively. Heat stress induced an approximately 13% body weight loss that did not differ by final group T(c); however, survival rate was affected by final T(c) (100% at 42.4 degrees C, 92% at 42.7 degrees C, and 46% at 43 degrees C). Hypothermia (T(c) < 34.5 degrees C) developed after heat stress, with the depth and duration of hypothermia significantly enhanced in the moderate and extreme compared with the mild group. Regardless of heat stress severity, every mouse that transitioned out of hypothermia (survivors only) developed a virtually identical elevation in T(c) the next day, but not night, compared with nonheated controls. To test the effect of the recovery T(a), a group of mice (n = 5) were acclimated for >4 wk and recovered at T(a) of 30 degrees C after moderate heat stress. Recovery at 30 degrees C resulted in 0% survival within approximately 2 h after cessation of heat stress. Using biotelemetry to monitor T(c) in the unrestrained mouse, we show that recovery from acute heat stress is associated with prolonged hypothermia followed by an elevation in daytime T(c) that is dependent on T(a). These thermoregulatory responses to heat stress are key biomarkers that may provide insight into heat stroke pathophysiology.  相似文献   

8.
Using a 38,000-dalton protein (FFP-38) purified from Tetrahymena acetone powder, we have succeeded in the polymerization of this protein into 14-nm filaments. The polymerization was initiated by incubating the purified FFP-38 fraction in a buffer containing 5 mM Mes (2-(N-Morpholino)ethanesulfonic acid), 50 mM KCl, 1.2 mM CaCl2, 0.6 mM ATP, pH 6.6, and by shifting the incubation temperature from 0 degrees C to 37 degrees C. The 14-nm filament is considered to consist of 7-nm globular subunits regularly arranged into 2 start, helical strands with 4 subunits per turn. The subunit may correspond to 9S tetramer of FFP-38, a native form of FFP-38. Since the subunit arrangement and subunit protein component of this 14-nm filament obviously differ from those of actin filament, 10-nm intermediate filament and microtubule, the 14-nm filament appears to be a newly found intracellular filament. Concerning the FFP-38 polymerization, some polymorphism appeared: we found ring structures having the diameters of 0.3--3.7 micrometers and latticed sheet structure, besides typical straight filaments.  相似文献   

9.
Radioresistance of E. coli cells is slightly increased (dose modification factor (DMF) = 1.2) with temperature elevated from 4 degrees to 43 degrees C at the time of gamma-irradiation. However, an appreciable effect of the thermoinduced radioresistance (DMF = 1.7) was observed when the wild-type cells were exposed to gamma-radiation at 15-43 degrees C (but not at 4 degrees C) after 30-min preincubation at 43 degrees C. This effect was absent in htpR mutants, defective in induction of heat shock proteins, and coupled with the decreased post-irradiation DNA degradation in gamma-irradiated htpR+ cells. It is suggested that heat shock proteins are involved in the thermoinduced radioresistance.  相似文献   

10.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

11.
Thermal effects occurring upon heating a culture of blue-green microalgae Spirulina platensis in the temperature range 5-55 degrees C were studied. Under these conditions, an intensive heat evolution was observed. The heat evolution-versus-temperature curve has a peak with a maximum at approximately 45 degrees C and two distinct shoulders at approximately 25 and 40 degrees C. It was found that heat evolution Q at heating rates below 0.083 degree C/min does not change and is (381 +/- 20) J/g of dry biomass. It was concluded that this value is optimal for maintaining the cell viability (in particular, respiration) under anaerobic conditions, in the dark and in the stationary regime.  相似文献   

12.
L D Pchelenko 《Biofizika》1989,34(4):671-674
Using a myothermometric method it was found that at 27 degrees and 37 degrees C the activation heat (Qa) of a single isometric contraction of the Wistar's rats isolated diaphragm averages 0.26 +/- 0.02 mcal/g and 0.60 +/- 0.13 mcal/g, accordingly, and Q10 = 2.3. It has been proved that the value of Qa depends on the gradient of intracellular temperature decrease (delta T, r = 0.89, p less than or equal to 0.01) as Qa = 1.68 delta T + 1.30 under 0.01 less than or equal to delta T less than or equal to 1.0. It was concluded that high significance of Qa for the muscles of warm-blooded points to the damaged energetics of the contraction recovery period and delta T is an intracellular informative signal which always determines the value of Qa via the feedback mechanism.  相似文献   

13.
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).  相似文献   

14.
The secondary quinone acceptor, Q(B), has been studied in photosystem II (PSII) isolated from Thermosynechococcus (T.) elongatus. Thermoluminescence indicated that Q(B) was present in this preparation. An EPR signal observed at low temperature at g = 1.9 was attributed to Fe2+ Q(B)- on the basis of the characteristic period-of-two variations in its intensity depending on the number of laser flashes given at 20 degrees C. When samples showing the Fe2+ Q(B)- signal were illuminated at 77 K, an EPR signal at g = 1.66 appeared with an amplitude proportional to that of the Fe2+ Q(B)- signal. This signal is attributed to the Q(A)- Fe2+ Q(B)- state. While these attributions have been made previously in PSII from other origins, they have remained relatively tentative since the characteristic period-of-two oscillations of Q(B) had not previously been observed. The flash experiments indicated that more than one exchangeable plastoquinone is associated with the isolated PSII. The g = 1.66 signal from the Q(A)- Fe2+ Q(B)- state was used to study the temperature dependence of electron transfer between the two quinones. Electron transfer occurred in half of the centers (after 30 s incubation) at -28 degrees C for Q(A)- to Q(B) but at -58 degrees C for Q(A)- to Q(B)-. This marked difference for the two electron transfer reactions indicates different types of rate-limiting reactions. In the better studied but homologous system, the purple bacterial reaction center, the Q(A)- to Q(B) step is limited by a gating process, while the Q(A)- to Q(B)- step is limited by protonation events. Similar reactions in PSII could give rise to the observed temperature dependence.  相似文献   

15.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

16.
17.
We examined the effect of hypertonic saline injection on heat-escape/cold-seeking behavior in desalivated rats. Rats were exposed to 40 degrees C heat after normal (154 mM NaCl, control) or hypertonic saline (2,500 mM NaCl) injection (1 ml/100 g body wt). The rats received a 0 degrees C air for 30 s when they entered a specific area in an experimental box. Core temperature (T(c)) surpassed 40 degrees C in both conditions when 0 degrees C air was not available. Hypertonic saline injection produced a lower baseline T(c) than control [36.9 +/- 0.2 and 37.9 +/- 0.2 degrees C (means +/- SE), P < 0.05] and a greater number of 0 degrees C air rewards during the 2-h heat with lower T(c) at the end (48 +/- 1 and 34 +/- 2, 37.6 +/- 0.1, and 37.3 +/- 0.1 degrees C in the control and hypertonic saline injection trial, respectively, P < 0.05, n = 6). However, T(c) was similar (37.7 +/- 0.2 and 37.6 +/- 0.4 degrees C in the control and hypertonic saline injection trial, n = 5) when 0 degrees C air was automatically and intermittently (35 times) given during the heat. Rats augment heat-defense mechanisms in response to osmotic stress by lowering the baseline T(c) and increasing heat-escape/cold-seeking behavior.  相似文献   

18.
Thermal transitions were measured by differential scanning calorimetry for rabbit cardiac sarcolemma in 3-(N-morpholino)propanesulfonic acid buffer at pH 7.5, in glycerol-buffer and dimethyl sulfoxide - buffer mixtures, after heat denaturation, and after enzymatic degradation of the proteins. Specific solvent effects on the protein transitions were observed. Glycerol stabilized some of the four protein transitions, while dimethyl sulfoxide destabilized all protein transitions. The thermal transitions in the lower temperature range were studied for both the membranes and the lipid extracted from the membranes. A very small endotherm was observed for both the lipid extracted from the sarcolemma and the intact membrane (0.1-0.2 cal/g; 1 cal = 4.1868 J). A larger endotherm was observed in both the glycerol-buffer and dimethyl sulfoxide - buffer mixtures. Major perturbation of the protein by enzymatic degradation (papain or trypsin digestion), by heat denaturation, or by reaction with excess N-ethylmaleimide all produced larger endotherms near 20 degrees C. The very small magnitude of the endotherm near 20 degrees C suggests that it is not a typical gel - liquid crystalline transition of the bilayer. However, the occurrence of an endotherm in the extracted lipid suggests that some reorientation of lipid is involved.  相似文献   

19.
(1) We measured cooling rate for neonatal mink during a 10min coldroom (3.9 degrees C) exposure and subsequent warming rate during a 20min incubator (37.2 degrees C) exposure, the behaviour of the kits and the changes in their pelage between 1 and 46d of age, in an attempt to monitor the ontogeny of their thermoregulatory capacity. (2) Body weight of the 1d old kits averaged only 12.8+/-2.3g (n=4), but they gained weight rapidly reaching 226.1+/-28.3g (males, n=4) and 207.6+/-16.1g (females, n=4) at 30-31d of age, and 562.3+/-43.2g (males, n=3) and 435.7+/-35.5g (females, n=4) at 45-46d of age. (3) Body cooling rate (C(rate) ( degrees C/min); n=80) was affected by the age (between 1 and 31d), BW, initial rectal temperature (T(r0)), and sex of the kits, in addition to their body posture (P(cold), 1=extended, 2=curled-up) during coldroom exposure. C(rate) ( degrees C/min)=-0.34-0.02age-0.002BW+0.05T(r0)-0.06sex-0.20P(cold) (R(2)=0.75). (4) Body warming rate (W(rate) ( degrees C/min); n=80) was influenced by the age(2) and rectal temperature of the kit after the coldroom exposure (T(r10)). W(rate)( degrees C/min)=1.24+0.0002age(2)-0.04T(r10) (R(2)=0.76). (5) Kit fur fibre length increased from 5.45+/-0.63mm (males, n=2) and 6.20+/-0.20mm (females, n=3) at 22-23d of age to 9.43+/-1.44mm (males, n=4) and 8.70+/-1.89mm (females, n=4) at 30-31d of age, and to 12.93+/-0.47mm (males, n=3) and 11.38+/-0.41mm (females, n=4) at 45-46d of age, the growth averaging about 0.26mm per day. (6) Under normal circumstances newborn mink kits are hypothermic.Their thermoregulation develops only gradually and is dependent on increase in body mass, insulation and behavioural thermoregulation. Their strategy of survival is based on the ability to withstand hypothermia and on the nutrition and warmth provided by the dam.  相似文献   

20.
recA protein binds to duplex DNA in the presence of Mg2+ and adenosine 5'-O-(3-thiotriphosphate) forming a stiff nucleoprotein filament with a distinct axial repeat which contains 17 +/- 1 base pairs and spans 8-9 nm along the fiber (Di Capua, E., Engel, A., Stasiak, A., and Koller, Th. (1982) J. Mol. Biol. 157, 87-103; Dunn, K., Chrysogelos, S., and Griffith, J. (1982) Cell 28, 757-765). Measurement of the protein:DNA ratio in these filaments utilizing double label analysis and isopycnic density banding shows that there are 2 recA monomers for every 17 base pairs. The DNA is also partially unwound in this filament. Utilizing the recA-induced relaxation of naturally supertwisted SV40 DNA, we show that the DNA is unwound by 11.5 +/- 1.5 degrees/base pair which corresponds to 180-200 degrees for each repeat unit along the filament length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号