首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Naturally occurring cholesterol-sequestering agents, digitonin, cereolysin and streptolysin O, activated rat lung particulate guanylate cyclase. Particulate enzyme treated with digitonin and cereolysin was further activated by sodium nitroprusside. Digitonin and cereolysin lowered sodium nitroprusside activation of the rat lung soluable guanylate cyclase. Activation of the particulate guanylate cyclase by digitonin and cereolysin was not due to the solubilization of the enzyme.  相似文献   

2.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

3.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

4.
A 37,000 X g supernatant fraction prepared from fat lung homogenate demonstrated a 2- to 3-fold increase in guanylate cyclase activity after incubation at 30 degrees for 30 min (preincubation). Treatment of the supernatant fraction with Triton X-100 increased activity to approximately the same extent as preincubation, but would not increase the activity after preincubation. By chromatography on Sepharose 2B, before and after preincubation, it was demonstrated that the increase in activity was only associated with the soluble guanylate cyclase, and not the particulate enzyme. Activation by preincubation required O2. It was completely inhibited by thiols such as 2-mercaptoethanol, and by bovine serum albumin, KCN, and sodium diethyldithiocarbamate. These inhibitors suggested a copper requirement for activation, and this was confirmed by demonstrating that 20 to 60 muM CuCl2 could relieve the inhibition by 0.1 mM sodium diethyldithiocarbamate. 2-Mercaptoethanol inhibition could also be reversed by removal of the thiol on a Sephadex G-25 column, however, this treatment partially activated the enzyme. Addition of 2-mercaptoethanol to a preincubated preparation would not reverse the activation. H2O2 was found to activate guanylate cyclase, either by its generation in the lung supernatant with glucose oxidase and glucose, or by its addition to a preparation in which the catalase was inhibited with KCN. KCN or bovine serum albumin was able to partially inhibit activation by glucose oxidase plus glucose, however, larger amounts of glucose oxidase could overcome that inhibition, indicating a catalytic role for Cu2+ at low H2O2 concentrations. No direct evidence for H2O2 formation during preincubation could be found, however, indirect evidence was obtained by the spectrophotometric detection of choleglobin formation from hemoglobin present in the lung supernatant fluid. The H2O2 is believed to result from the reaction of oxyhemoglobin with ascorbate.  相似文献   

5.
Guanylate cyclase was purified 1000-fold from washed rat lung particulate fractions to a final specific activity of 500 nmoles cyclic GMP produced/min/mg protein by a combination of detergent extraction and chromatography on concanavalin A-Sepharose, GTP-agarose, and blue agarose. Particulate guanylate cyclase has a molecular weight of 200 000 daltons, a Stokes radius of 48 A and a sedimentation coefficient of 9.4 while the soluble form has a molecular weight of 150 000 daltons, a Stokes radius of 44 A, and a sedimentation coefficient of 7.0. Whereas the particulate enzyme is a glycoprotein with a specific affinity for concanavalin A and wheat germ agglutinin, the soluble form of guanylate cyclase did not bind to these lectins. Purified particulate guanylate cyclase did not cross-react with a number of monoclonal antibodies generated to the soluble enzyme. While both forms of the enzyme could be regulated by the formation of mixed disulfides, the particulate enzyme was relatively insensitive to inhibition by cystine. With GTP as substrate both forms of the enzyme demonstrated typical kinetics, and with GTP analogues negative cooperativity was observed with both enzyme forms. These data support the suggestion that the two forms of guanylate cyclase possess similar catalytic sites, although their remaining structure is divergent, resulting in differences in subcellular distribution, physical characteristics, and antigenicity.  相似文献   

6.
7.
The guanylate cyclase reaction was studied to determine the identity of the product(s) formed other than guanosine-3′,5′-monophosphate (cyclic GMP). Partially purified guanylate cyclase preparations from rat lung catalyzed the formation of nearly equal amounts of PP1 and of cyclic GMP from GTP. Column chromatography of the enzyme preparation on DEAE-Sephadex or Bio-Gel A-5m failed to separate the enzyme(s) involved in formation of cyclic GMP and of PP1. Nucleotide inhibitors of cyclic GMP formation also inhibited PP1 formation, and Ca2+, a stimulant of cyclic GMP formation in the presence of Mn2+, also stimulated PP1 formation. Detectable PP1 formation was not observed when ATP was present instead of GTP.The results show that guanylate cyclase, in vitro, catalyzes the formation of pyrophosphate from GTP concomitant with the synthesis of cyclic GMP.  相似文献   

8.
The soluble form of guanylate cyclase from rat lung has been purified approximately 23,000-fold to homogeneity by isoelectric precipitation, GTP-Sepharose chromatography, and preparative gel electrophoresis. A single protein-staining band is observed after analytical gel electrophoresis on either 4 or 7.5% polyacrylamide gels. The final purified enzyme has a specific activity of about 700 nmol of cyclic GMP formed/min/mg of protein at 37 degrees C in the presence of 4.8 mM MnCl2 and 100 micrometer GTP. Bovine serum albumin appears to slightly increase guanylate cyclase activity, but mainly stabilizes the purified enzyme; in its presence, specific activities in excess of 1 mumol of cyclic GMP formed/min/mg of enzyme protein can be obtained. When Mg2+ or Ca2+ are substituted for Mn2+, specific activities decrease to approximately 21 and 40 nmol of cyclic GMP formed/min/mg of protein, respectively. The apparent Michaelis constant for MnGTP in the presence of 4.8 mM MnCl2 is 10.2 micrometer. Kinetic patterns on double reciprocal plots as a function of free Mn2+ are concave downward. The native enzyme has a molecular weight of approximately 151,000 as determined on Sephacryl S-200; sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with approximate molecular weights of 79,400 and 74,000. Thus, it appears that the soluble form of guanylate cyclase from rat lung exists as a dimer.  相似文献   

9.
Soluble guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from rat lung demonstrated concentration-dependent stimulation, that is, an increase in specific activity with increasing enzyme (protein) concentration. This phenomenon persisted through several steps of enzyme purification and was apparently due to the presence of a macromolecular activator, similar in size to the enzyme. Treatment of partially purified enzyme with N-ethylmaleimide destroyed catalytic activity, but did not effect the ability of the preparation to stimulate activity. Kinetic analysis demonstrated that the stimulation was due to an increased V value with no change in the apparent Km value for MnGTP. Stimulation occurred without a time lag, the activator apparently interacting reversibly with the enzyme to increase catalytic capability. Some nonionic detergents of the Triton series inhibited enzyme activity by decreasing the V value, with no change in the Km value, and also decreased concentration-dependent stimulation. However, the two phenomena were not directly related. While the physiological significance of the activator is unclear, its presence affects estimations of recovery during enzyme purification, V determinations, and determinations of the effect of hormone or drug treatment on the activity of tissue extracts.  相似文献   

10.
Guanylate cyclase activities are present in both soluble and particulate fractions of rat myometrial extract. Triton, slightly stimulated the soluble (50%) while markedly increasing (1000%) the particulate activity. Both fractions appear to be regulated independently. Predominantly, the soluble form was activated by sodium nitroprusside, involving interactions with SH-groups. On the other hand, the particulate form was stimulated by a series of unsaturated fatty acids and their hydroperoxides. The latter activation appears to result from direct hydrophobic effects rather than peroxide or free radical generation.  相似文献   

11.
Soluble guanylate cyclase was partially purified from rat lung homogenates, and shown to be inhibited by the following sulfated polyanions, with the I50 in μg/ml in parentheses: Polyvinyl sulfate (0.33), 40,000-dalton dextran sulfate (0.45), polyanetholesulfonate (0.63) 500,000-dalton dextran sulfate (1.8), λ-carrageenan (2.9), τ-carrageenan (6.1), κ-carrageenan (48.0), heparin (68.0). There was a good correlation between inhibitory potency and sulfate content (as total sulfur). Inhibition by heparin and the carrageenans (but not the others) was potentiated by Mn2+, but not Ca2+ or Mg2+, when [Mn2+] exceeded [GTP]. Mn2+-potentiation could be blocked by high Na+. Heparin-agarose shows promise as an affinity matrix for guanylate cyclase.  相似文献   

12.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

13.
Effect of carnosine on the activation of soluble guanylate cyclase by sodium nitroprusside and protoporphyrin IX was studied using human platelet 105000 g supernatants and partially purified heme-deficient guanylate cyclase preparations. In experiments with 105000 g supernatants, carnosine (1 mM) inhibited the enzyme activation by nitroprusside by about 70%. With the partially purified heme-deficient guanylate cyclase, the enzyme activation by nitroprusside was lowered by 86%, and the remaining insignificant stimulatory effect remained unchanged upon carnosine addition. The stimulatory effect of protoporphyrin IX on the partially purified heme-deficient enzyme preparation did not differ from that observed with the 105000 g supernatant; carnosine addition had no effect on activation of guanylate cyclase by protoporphyrin IX. It was concluded that the inhibitory effect of carnosine on the ability of the enzyme to be activated by nitroprusside is due to the interaction of carnosine with guanylate cyclase, and that it is heme directed.  相似文献   

14.
Sodium azide, hydroxylamine, and phenylhydrazine at concentrations of 1 mM increased the activity of soluble guanylate cyclase from rat liver 2- to 20-fold. The increased accumulation of guanosine 3':5'-monophosphate in reaction mixtures with sodium azide was not due to altered levels of substrate, GTP, or altered hydrolysis of guanosine 3':5'-monophosphate by cyclic nucleotide phosphodiesterase. The activation of guanylate cyclase was dependent upon NaN3 concentration and temperature; preincubation prevented the time lag of activation observed during incubation. The concentration of NaN3 that resulted in half-maximal activation was 0.04 mM. Sodium azide increased the apparent Km for GTP from 35 to 113 muM. With NaN3 activation the enzyme was less dependent upon the concentration of free Mn2+. Activation of enzyme by NaN3 was irreversible with dilution or dialysis of reaction mixtures. The slopes of Arrhenius plots were altered with sodium azide-activated enzyme, while gel filtration of the enzyme on Sepharose 4B was unaltered by NaN3 treatment. Triton X-100 increased the activity of the enzyme, and in the presence of Triton X-100 the activation by NaN3 was not observed. Trypsin treatment decreased both basal guanylate cyclase activity and the responsiveness to NaN3. Phospholipase A, phospholipase C, and neuraminidase increased basal activity but had little effect on the responsiveness to NaN3. Both soluble and particulate guanylate cyclase from liver and kidney were stimulated with NaN3. The particulate enzyme from cerebral cortex and cerebellum was also activated with NaN3, whereas the soluble enzyme from these tissues was not. Little or no effect of NaN3 was observed with preparations from lung, heart, and several other tissues. The lack of an effect with NaN3 on soluble GUANYLATE Cyclase from heart was probably due to the presence of an inhibitor of NaN3 activation in heart preparations. The effect of NaN3 was decreased or absent when soluble guanylate cyclase from liver was purified or stored at -20degrees. The activation of guanylate cyclase by NaN3 is complex and may be the result of the nucleophilic agent acting on the enzyme directly or what may be more likely on some other factor in liver preparations.  相似文献   

15.
Particulate guanylate cyclase from rat lung was stimulated less than 2-fold by agents capable of activating the soluble guanylate cyclase, including sodium nitroprusside, MNNG, azide and hydroxylamine. The action of the first two agents was potentiated by 10 mM 2-mercaptoethanol, and that of the last two by catalase. Pretreatment of the particulate enzyme with the polyene antibiotic, filipin, potentiated the stimulatory effects of the activators, activity with 1 mM nitroprusside in the presence of 2-mercaptoethanol being increased 10.4-fold over basal. The enzyme treated with filipin and nitroprusside showed less specificity for Mn2+, as it was able to use Mg2+ as sole cation more efficiently than the untreated enzyme. Since filipin is known to alter membrane fluidity by interacting with membrane cholesterol, it is proposed that the activity of membrane bound guanylate cylase may be regulated in part by the fluid state of the phospholipid matrix.  相似文献   

16.
Soluble guanylate cyclase of human platelets was stimulated by thiol oxidizing compounds like diamide and the reactive disulfide 4, 4'-dithiodipyridine. Activation followed a bell-shaped curve, revealing somewhat different optimum concentrations for each compound, although in both cases, higher concentrations were inhibitory. Diamide at a concentration of 100 microM transiently activated the enzyme. In the presence of moderate concentrations of diamide and 4,4'-dithiodipyridine, causing a two- to fourfold activation by themselves, the stimulatory activity of NO-releasing compounds like sodium nitroprusside was potentiated. In contrast, higher concentrations of thiol oxidizing compounds inhibited the NO-stimulated activation of soluble guanylate cyclase. Activation of guanylate cyclase was accompanied by a reduction in reduced glutathione and a concomitant formation of protein-bound glutathione (protein-SSG). Both compounds showed an activating potency as long as reduced glutathione remained, leading to inhibition of the enzyme just when all reduced glutathione was oxidized. Activation was reversible while reduced glutathione recovered and protein-SSG disappeared. We propose that diamide or reactive disulfides and other thiol oxidizing compounds inducing thiol-disulfide exchange activate soluble guanylate cyclase. In this respect partial oxidation is associated with enzyme activation, whereas massive oxidation results in loss of enzymatic activity. Physiologically, partial disulfide formation may amplify the signal toward NO as the endogenous activator of soluble guanylate cyclase.  相似文献   

17.
The soluble guanylate cyclase from rat lung was immobilized by absorption rather than covalent attachment on hexyl-, octyl-, or decyl-agarose. The enzyme retained activity after being bound to these matrices and could be compared to the soluble, mobile form of the enzyme. Compared to the soluble enzyme, the immobilized guanylate cyclase had a lower apparent maximal velocity and a higher apparent Km for MeGTP in the presence of Mg2+, Ca2+, or Mn2+. The apparent maximum velocity was reduced to the same extent by hexyl-, octyl-, or decyl-agarose, but the reduction in activity was greater with Mg2+ than with Ca2+ or Mn2+. Both the soluble and immobilized guanylate cyclase displayed concave downward patterns on double reciprocal polots as a function of Mn2+, and Ca2+ caused apparent activation of either form of the enzyme. MnATP appeared to be a linear competitive inhibitor with respect to MnGTP for both forms of the enzymes but the ki was 3 micron for the soluble form and 30 micron for the immobilized form. These results demonstrate that the soluble form of guanylate cyclase from rat lung retains many of its basic properties after being immobilized on a hydrophobic matrix; however, rather pronounced decreases in the maximum velocity and increases in the apparent Michaelis constant for MeGTP, particularly for MgGTP, are observed upon immobilization.  相似文献   

18.
Xia Xd  Xu ZJ  Bi YT 《中国应用生理学杂志》2003,19(2):159-160,F003
目的 :探讨慢性低氧高二氧化碳对大鼠肺动脉及支气管可溶性鸟苷酸环化酶 (sGC)蛋白表达的影响。方法 :雄性SD大鼠于低氧高二氧化碳饲养舱复制动物模型 ,免疫组织化学技术观察低氧高二氧化碳组及对照组肺组织sGCα1 、β1 亚基蛋白的表达。结果 :sGC在正常大鼠肺动脉、支气管平滑肌上阳性表达并呈梯度现象 ,低氧高二氧化碳组肺细小动脉及支气管平滑肌sGC蛋白与对照组相比逐渐减弱 (均P <0 .0 1)。结论 :低氧高二氧化碳抑制肺细小动脉及支气管平滑肌sGC蛋白的表达。  相似文献   

19.
Guanylate cyclase activity (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2.), measured in purified rat liver plasma membranes, was markedly increased by treatment with various purified proteases. The effect was maximal with trypsin, alpha-chymotrypsin, papain, and thermolysin (6- to 8-fold increase with 5 to 20 microgram of protease/ml) and lower with subtilisin and elastase (3- to 4-fold increase). The activation was due to an increase in the maximal velocity of the cyclizing reaction. No modification was observed either in the apparent affinity for the substrate MnGTP or in the cooperative behavior of the enzyme kinetics which displayed Hill coefficients of 1.6 for both basal and activated states. The Triton X-100-dispersed guanylate cyclase remained sensitive to papain, which suggests that the action of proteases was not restricted to an indirect action upon the membranous environment of the guanylate cyclase. In contrast, the cytosolic soluble guanylate cyclase, assayed in the presence or absence of sodium azide, was absolutely insensitive to papain. Thus, proteolysis represents a previously undescribed mechanism for activating membranous guanylate cyclase systems, which might be of importance in the physiological regulation of this enzyme.  相似文献   

20.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号