首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anatomical structure of central respiratory chemoreceptors in the superficial ventral medulla of rats was studied by using hypercapnia-induced c-fos labeling to identify cells directly stimulated by extracellular pH or PCO(2). The distribution of c-fos-positive cells was found to be predominantly perivascular to surface vessels. In the superficial ventral medullary midline, parapyramidal, and ventrolateral regions where c-fos-positive cells were concentrated, we found a common, characteristic, anatomical architecture. The medullary surface showed an indentation covered by a surface vessel, and the marginal glial layer was thickened. We classified c-fos-positive cells into two types. One (type I cell) was small, was located inside the marginal glial layer and close to the medullary surface, and surrounded fine vessels. The other (type II cell) was large and located dorsal to the marginal glial layer. c-fos Expression under synaptic blockade suggested that type I cells are intrinsically chemosensitive. The chemosensitivity of surface cells (possible type I cells) surrounding vessels was confirmed electrophysiologically in slice preparations. We suggest that this characteristic anatomical structure may be the central chemoreceptor.  相似文献   

2.
Summary The spatial distribution and fine structure of the lymphatic vessels within the thymic lobules of normal and hydrocortisone-injected mice were studied by light- and electron microscopy. The lymphatic vessels of the cortex and medulla of normal thymus are irregularly shaped spaces closely associated with branches of the intralobular artery and vein. The overall distribution of these vessels in the greatly involuted thymus of hydrocortisone-treated mice is essentially the same as in the normal thymus. The wall of the lymphatic vessels consists of only a layer of endothelial cells supported by underlying reticular cells. The luminal surface of the endothelial cell is smooth, but trabecular processes are often seen. There are three morphological types of intercellular contacts between contiguous cells, namely, end-to-end, overlapping and interdigitating. The lymphatic vessel has anchoring filaments and collagen fibrils, but a basal lamina is either absent, or if present, is discontinuous. This is in contrast to the continuous basal lamina of the venule. The perivascular space surrounding the postcapillary venule opens into a terminal lymphatic vessel at the cortico-medullary junction and in the medulla. Lymphocytes are seen penetrating the lymphatic endothelium, particularly in acutely involuted thymuses. These findings suggest that the intralobular lymphatic vessels may originate from the vacuities that surround the postcapillary venules, and the lymphatic system may function as a pathway for the migration of lymphocytes into or out of the lymphatic circulation.  相似文献   

3.
The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.  相似文献   

4.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

5.
Effects of orexin on cultured porcine adrenal medullary and cortex cells   总被引:2,自引:0,他引:2  
New orexigenic peptides called orexins have recently been described in the neurons of the lateral hypothalamus and perifornical area. No orexins have been found in the adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin receptor (OXR) in the rat adrenal gland has been reported. With regard to the effects of orexins on peripheral organs, we previously reported that orexins suppress catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. To further clarify the pharmacological effects of orexins on peripheral organs, we examined the effects of orexin-A on catecholamine, cortisol, and aldosterone secretion, using cultured porcine adrenal glands. We initially confirmed the expression of the orexin receptor (OXR-1) in cultured porcine adrenal medulla and cortex. Orexin-A (1000 nM) significantly increased the release of both epinephrine (E) and norepinephrine (NE) from porcine adrenal medullary cells. Similarly, orexin-A (> or = 100 nM) significantly increased the release of both cortisol and aldosterone from porcine adrenal cortex cells. Orexin-A (100 nM) significantly inhibited basal and the PACAP-induced increase in cAMP levels in adrenal medullary cells. Conversely, orexin-A (>o = 100 nM) significantly increased the cAMP level in adrenal cortex cells. These results indicate that orexin-A induces the release of catecholamine from porcine adrenal medullary cells, and aldosterone and cortisol from the cortex cells and has opposite effects on cAMP levels in adrenal medulla and cortex.  相似文献   

6.
The development of neuron-like cholinergic immunophenotypes by adrenal chromaffin cells was studied in 10-week-old mouse adrenal medullary grafts. Fragments of chromaffin tissue were implanted into mouse hippocampus, and antibodies specific for neurofilaments (NF), neuron-specific enolase (NSE), choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and phenylethanolamine-N-methyltransferase (PNMT) were applied to the grafts. Adrenal medulla grafts survived well and most of the transplanted cells were either round or polygonal. A minority of chromaffin cells elaborated an intermediate or sympathetic neuron phenotype. Chromaffin cells showed pronounced immunoreactivity for NSE in their perikarya and axon-like processes: immunoreactivity for NF was only found in a few processes. In adjacent immunohistochemically stained sections, the transplanted cells stained for ChAT and AChE. At the electron-microscope level, the immunohistochemical reactions for the two acetylcholine-related enzymes were mainly located on the endoplasmic reticulum and in cell processes. Immunoreactivity for PNMT was found to decline in transplanted chromaffin cells below that of normal adrenal medulla. These observations suggest that, in adrenal medullary grafts implanted into the hippocampus, chromaffin cells are endowed with neuron-like cholinergic immunophenotypes.  相似文献   

7.
Changes in the murine thymus during pregnancy were studied using immunocytochemistry with monoclonal antibodies against thymic epithelial, neuroendocrine, and thymulin-producing cells, fibroblasts, blood vessels and connective tissue components. Extensive alterations occur in mid-pregnancy. The medulla was greatly enlarged in the involuted thymus, and there were greater numbers of epithelial cells. These epithelial cells had an altered distribution forming large structures surrounding spherical masses of mononulear cells, lacked epithelial cells and often contained a central blood vessel with fibroblasts and connective tissue. We have called these structures medullary epithelial rings (MERs). To our knowledge these structures have not been described before. Late in pregnancy the loss of the central mononuclear cells leaves collapsed structures in a smaller medulla that nevertheless retains many epithelial cells. In virgins and early-pregnancy, there are cortical channels free of epithelial cells that are very infrequent later in pregnancy. This may reflect the loss of steroid-sensitive thymocytes from the cortex. The influence of sex-steroids neurological impulses and immune activity in causing the changes are discussed, as are the possible consequences in pregnancy of a reduced, thymocyte-depleted cortex and an enlarged medulla that shows great complexity and activity.  相似文献   

8.
Abstract: The levels of neuron-specific enolase (NSE) in rat adrenal medulla increase with age. A sharp increase was observed until the age of 15 days. At this time, the NSE level dropped slightly, followed by a gradual increase until the rats were 1 year old. The adrenal medullary NSE levels in males were higher than those observed in females. The difference was seen from 32 days of age, but was not statistically significant until 1 year. This study indicates that NSE can be used as a marker for differentiation in adrenal medulla, as it is used in the central nervous system and in neuroblastoma and pheochromocytoma cells.  相似文献   

9.
Degree of differentiation and blood vessel proximity in B16 melanoma   总被引:1,自引:0,他引:1  
Corded structures consisting of rows of viable tumour cells around a central blood vessel are present in a number of transplantable mouse tumours, including transplantable B16 melanomas. These tumours were used to assess, by stereological means at the EM level, the range of differentiation of the melanoma cells, according to their position in relation to the central blood vessel. The mitotic index was also determined for perivascular and peripheral tumour cells separately. Furthermore, the transition of peripherally located cells into necrotic tumour cells is described at the EM level. Results shown an important increase in differentiation in peripheral tumour cells, whereas the mitotic index is highest in perivascular cells. Necrotic peripheral cells show features of apoptotic necrosis, together with necrosis of the ischaemic type. Results indicate that both proliferation and differentiation of melanoma cells are related to their position around a central blood vessel, and that peripheral necrosis is not exclusively due to lack of oxygen.  相似文献   

10.
Experiments were performed to determine whether L-arginine transport regulates nitric oxide (NO) production and hemodynamics in the renal medulla. The effects of renal medullary interstitial infusion of cationic amino acids, which compete with L-arginine for cellular uptake, on NO levels and blood flow in the medulla were examined in anesthetized rats. NO concentration in the renal inner medulla, measured with a microdialysis-oxyhemoglobin trapping technique, was significantly decreased by 26-44% and renal medullary blood flow, measured by laser Doppler flowmetry, was significantly reduced by 20-24% during the acute renal medullary interstitial infusion of L-ornithine, L-lysine, and L-homoarginine (1 micromol.kg(-1).min(-1) each; n = 6-8/group). In contrast, intramedullary infusion of L-arginine increased NO concentration and medullary blood flow. Flow cytometry experiments with 4-amino-5-methylamino-2',7'-difluorescein diacetate, a fluorophore reactive to intracellular NO, demonstrated that L-ornithine, L-lysine, and L-homoarginine decreased NO by 54-57% of control, whereas L-arginine increased NO by 21% in freshly isolated inner medullary cells (1 mmol/l each, n > 1,000 cells/experiment). The mRNA for the cationic amino acid transporter-1 was predominantly expressed in the inner medulla, and cationic amino acid transporter-1 protein was localized by immunohistochemistry to the collecting ducts and vasa recta in the inner medulla. These results suggest that L-arginine transport by cationic amino acid transport mechanisms is important in the production of NO and maintenance of blood flow in the renal medulla.  相似文献   

11.
Ovarian angioarchitecture was studied by scanning electron microscopy of vascular corrosion casts in estrous, pseudopregnant (stimulated with human chorionic gonadotropin) and pregnant rabbits. In all samples, the proper ovarian branch of the ovarian artery (ramus ovaricus) entered the ovarian hilus near the caudal pole of the organ and ran parallel to the major axis of the hilus. The extraovarian venous drainage was formed by several vessels emptying into a distal large vein. The ramus ovaricus exhibited various degrees of coiling and branched in the medulla. The coiling of the ramus ovaricus and its ramifications were maintained in all samples. A venous meshwork and/or flat vein branches closely enveloped the arterial coils found in the hilus and outer medulla. At this level numerous arteriovenous contacts were demonstrated in all samples. The coiled arteries, prior to entering the ovarian cortex, supplied several small peripheral follicles which were drained by the hilar veins. In the cortex the coiled arteries branched in numerous thin, straight or slightly undulated arterioles which supplied developing estrous follicles and pseudopregnant corpora lutea. The arterioles supplying the pregnant corpora lutea were long, large and tightly spiraled. The venous drainage followed the modifications of the arterial supply. These data demonstrate that ovarian cycle and pregnancy induced significant changes in the cortical vessels, which adapted their structure to the temporary functional needs of the recruited follicles or corpora lutea. Hilar and medullary vessels have permanent structures that may represent morphological devices for (a) a continuous control of the blood flow (spiral arteries) and (b) a local recirculation of endocrine products (arteriovenous contacts) comparable to the ”countercurrent mechanism” previously shown to operate in ovaries of other species, but not yet found in rabbits. Received: 19 June 1996 / Accepted: 7 October 1996  相似文献   

12.
The effects of acute asphyxia on both the time course of blood flow changes in central and peripheral organs, including the skin, and the time course of changes in oxygen consumption were studied in 9 unanaesthetized fetal sheep in utero at 130 +/- 2 days of gestation during 4-min arrest of uterine blood flow. Blood flow distribution and total oxygen consumption were determined at 1-min intervals during asphyxia using isotope-labelled microspheres (15 micrograms diameter) and by calculating the decline of the arterial O2 content, respectively. During asphyxia peripheral blood flow including that to the skin, scalp, and choroid plexus decreased rapidly, whereas blood flow to the heart, brain stem and (in surviving fetuses only) adrenals increased slowly. Total oxygen consumption fell exponentially with time and was closely correlated with the fall in both arterial oxygen content and peripheral blood flow; the time courses of these changes were very similar to those of the decreasing blood flows to the skin and scalp. Blood flow within the brain was redistributed at the expense of the cerebrum and the choroid plexus; the total blood flow to the brain did not change. In the 5 fetuses that died during the recovery period adrenal blood flow failed to increase and, at the nadir of asphyxia, peripheral vessels dilated and central vessels constricted. We conclude that in fetal sheep near term during acute asphyxia the time course of changes in blood flow to central and peripheral organs is different; total oxygen consumption depends on arterial O2 content and peripheral blood flow; total blood flow to the brain does not change, but is redistributed towards the brain stem at the expense of the cerebrum and choroid plexus; fetal death is preceded by a failure of adrenal blood flow to increase, by peripheral vasodilatation, and by central vasoconstriction and skin blood flow validly indicates rapid changes in the distribution of blood flow and the changes in oxygen consumption that accompany it.  相似文献   

13.
Gamma-aminobutyric acid (GABA) immunoreactivity was revealed by immunocytochemistry in the mouse adrenal gland at the light and electron microscopic levels. Groups of weakly or faintly GABA immunoreactive chromaffin cells were often seen in the adrenal medulla. By means of immunohistochemistry combined with fluorescent microscopy, these GABA immunoreactive chromaffin cells showed noradrenaline fluorescence. The immunoreaction product was seen mainly in the granular cores of these noradrenaline cells. These results suggest the co-existence of GABA and noradrenaline within the chromaffin granules. Sometimes thick or thin bundles of GABA immunoreactive nerve fibers with or without varicosities were found running through the cortex directly into the medulla. In the medulla, GABA immunoreactive varicose nerve fibers were numerous and were often in close contact with small adrenaline cells and large ganglion cells; a few, however, surrounded clusters of the noradrenaline cells, where membrane specializations were formed. Single GABA immunoreactive nerve fibers, and thin or thick bundles of the immunoreactive varicose nerve fibers ran along the blood vessels in the medulla. The immunoreaction deposits were observed diffusely in the axoplasm and in small agranular vesicles of the GABA immunoreactive nerve fibers. Since no ganglion cells with GABA immunoreactivity were found in the adrenal gland, the GABA immunoreactive nerve fibers are regarded as extrinsic in origin.  相似文献   

14.
Summary A casting technique has been employed to display in three dimensions, the lymphatic microcirculation within the human lymph node. The casting compound filled the marginal sinus, and diffusely permeated the cortical lymphoid parenchyma. However, deep within the lymph node in the medullary region, the medium remained within the limits of the sinus walls. The casts showed well-defined channels appearing similar to vessels. These converged into larger vessels, which drained into efferent lymphatics leaving the node at the hilus.Electron microscopic examination showed that the outer wall of the marginal sinus and the trabecular side of trabecular sinuses had an intact, continuous endothelium with a basement membrane. However, gaps were present in the inner wall of the marginal sinus, as well as in the parenchymal wall of the trabecular sinus. In the medulla, the sinuses were lined by endothelial cells which appeared similar to macrophages. The sinus lining was incomplete and possessed numerous perforations. These observations indicated that sinus walls adjacent to connective tissue served as a barrier to cell movement, but those adjacent to a large lymphoid cell population had gaps, with cells in apparent transit between sinus lumen and parenchyma.  相似文献   

15.
The ultrastructure and cytochemistry of fetal porcine adrenal medullae have been studied at 60, 80, and 100 days of gestation. Adrenal medullae from fetuses at 60 days of pregnancy consisted of norepinephrine cells only. Some cells containing chromaffin granules were seen in the process of mitosis. A few epinephrine cells were present in the outer medullary zone at 80 days at pregnancy, their number increasing by the 100 day of pregnancy. Chromaffin cells containing both norepinephrine and epinephrine storing granules were also present at 80 and 100 days of gestation. Norepinephrine and epinephrine specific granular vesicles in the fetal adrenal medullary cells were smaller than those reported for the adult pig. The general ultrastructural characteristics of the porcine fetal adrenal medulla were similar to those reported for prenatal adrenal medulla of other species.  相似文献   

16.
Brain stimulation or activation of certain reflexes can result in differential activation of the two populations of adrenal medullary chromaffin cells: those secreting either epinephrine or norepinephrine, suggesting that they are controlled by different central sympathetic networks. In urethan-chloralose-anesthetized rats, we found that antidromically identified adrenal sympathetic preganglionic neurons (SPNs) were excited by stimulation of the rostral ventrolateral medulla (RVLM) with either a short (mean: 29 ms) or a long (mean: 129 ms) latency. The latter group of adrenal SPNs were remarkably insensitive to baroreceptor reflex activation but strongly activated by the glucopenic agent 2-deoxyglucose (2-DG), indicating their role in regulation of adrenal epinephrine release. In contrast, adrenal SPNs activated by RVLM stimulation at a short latency were completely inhibited by increases in arterial pressure or stimulation of the aortic depressor nerve, were unaffected by 2-DG administration, and are presumed to govern the discharge of adrenal norepinephrine-secreting chromaffin cells. These findings of a functionally distinct preganglionic innervation of epinephrine- and norepinephrine-releasing adrenal chromaffin cells provide a foundation for identifying the different sympathetic networks underlying the differential regulation of epinephrine and norepinephrine secretion from the adrenal medulla in response to physiological challenges and experimental stimuli.  相似文献   

17.
阻断猫基底动脉引起的延髓缺血和呼吸血压效应的研究   总被引:2,自引:0,他引:2  
目的 :通过结扎基底动脉主干不同节段观察脑干缺血范围和神经元形态学变化以及呼吸活动和动脉血压的变化 ,为进一步探讨脑干缺血影响呼吸和循环等功能活动的机制和防治措施提供依据。方法 :以猫为实验对象 ,结扎基底动脉主干不同节段 ,分析脑干缺血区血管密度和神经元形态学变化 ,以膈肌肌电和股动脉血压为指标 ,观察呼吸活动和血压的变化。结果 :结扎基底动脉可引起延髓血管密度减小 ,引起延髓缺血。结扎基底动脉不同节段引起的缺血范围有明显重叠 ,缺血区主要位于闩平面吻端的延髓。缺血区神经元胞体肿胀 ,尼氏染色着色变浅 ,尼氏体减少。动物的吸气时程 (TI)和呼气时程 (TE)缩短 ,呼吸频率 (RF)增快 ,平均动脉血压 (MBP)下降 ,均P <0 .0 5,呼吸幅度 (A)无明显变化。结论 :基底动脉不同节段对延髓的血液供应有明显重叠 ,延髓缺血可引起呼吸和血压改变 ,延髓缺血性神经元损伤是引起呼吸、血压改变的结构基础  相似文献   

18.
Stability of Bovine Adrenal Medulla Cells in Culture   总被引:28,自引:17,他引:11  
The functional stability of primary cultures of adrenal medulla cells was investigated. Isolated cells were prepared by treatment of bovine adrenal glands with collagenase followed by purification on Percoll density gradients and were maintained in Dulbecco's medium containing 10% fetal calf serum. Within 12 h after plating on plastic culture dishes, the cells became firmly attached and exhibited good survival for periods of time up to 3 weeks, as indicated by their morphology using light and electron microscopy, by maintenance of their content of catecholamines, tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine N-methyltransferase, and their ability to respond to secretagogues. During the first 10 days to 2 weeks in culture there was little or no change in any of these parameters. During the 3rd week there were progressive losses of catecholamine and enzyme activities and increased vacuolization of medullary cells. The cells synthesized protein and RNA with no apparent loss in activities over the period studied, but did not incorporate [3H]thymidine into PCA-precipitable material. The cells responded to secretagogues and secretory antagonists similarly to isolated perfused adrenal glands. The studies described here demonstrate that primary cultures of adrenal medulla cells provide an excellent experimental system for obtaining more detailed information on stimulus-secretion coupling and other functional aspects of the adrenal medulla.  相似文献   

19.
Blood vessels are subject to tensile stress and associated strain which may influence the structure and organization of smooth muscle cells (SMCs) during physiological development and pathological remodeling. This study focused on the influence of the major tensile strain on the SMC orientation in the blood vessel wall. Several blood vessels, including the aorta, the mesenteric artery and vein, and the jugular vein of the rat were used to observe the normal distribution of tensile strains and SMC orientation; and a vein graft model was used to observe the influence of altered strain direction on the SMC orientation. The circumferential and longitudinal strains in these blood vessels were measured by using a biomechanical technique, and the SMC orientation was examined by fluorescent microscopy at times of 10, 20, and 30 days. Results showed that the SMCs were mainly oriented in the circumferential direction of straight blood vessels with an average angle of approximately 85 deg between the SMC axis and the vessel axis in all observed cases. The SMC orientation coincided with the principal direction of the circumferential strain, a major tensile strain, in the blood vessel wall. In vein grafts, the major tensile strain direction changed from the circumferential to the longitudinal direction at observation times of 10, 20, and 30 days after graft surgery. This change was associated with a decrease in the angle between the axis of newly proliferated SMCs and that of the vessel at all observation times (43 +/- 11 deg, 42 +/- 10 deg, and 41 +/- 10 deg for days 10, 20, and 30, respectively), indicating a shift of the SMC orientation from the circumferential toward the longitudinal direction. These results suggested that the major tensile strain might play a role in the regulation of SMC orientation during the development of normal blood vessels as well as during remodeling of vein grafts.  相似文献   

20.
Adrenomedullin, originally identified in the adrenal medulla, has binding sites in the adrenal gland; however, its role in the adrenal medulla is unclear. This study was designed to characterise adrenomedullin binding sites in the rat adrenal medulla, using ligand binding studies, immunocytochemistry, and mRNA analysis. A single population of specific adrenomedullin receptors was identified in adrenal medullary homogenates. 125I-Adrenomedullin was displaced only by adrenomedullin1-50 and not by calcitonin gene-related peptide or amylin at concentrations up to 100 nmol/L. The receptor K(D) was 3.64 nmol/L with a receptor density of 570 fmol/mg of protein. Analysis of mRNA revealed that the genes encoding both the putative adrenomedullin receptors, termed calcitonin receptor-like receptor (CRLR) and L1, were expressed in the rat adrenal medulla. Dual-colour indirect-labelled immunofluorescence was used to localise phenylethanolamine N-methyltransferase (PNMT) and the adrenomedullin receptor in the same section. PNMT is the enzyme that converts noradrenaline to adrenaline and is not expressed in noradrenaline-secreting cells. These studies revealed that both CRLR and L1 were expressed only in cells that did not express PNMT, suggesting that adrenomedullin receptors are only found in noradrenaline-secreting cells. Further evidence to support this conclusion was provided by the demonstration of colocalisation of adrenomedullin receptors with dopamine beta-hydroxylase, confirming the presence of the receptors in medullary chromaffin cells. Taken together, these data suggest that adrenomedullin acts through a specific adrenomedullin receptor in the rat adrenal medulla. RT-PCR and northern blot analysis revealed greater abundance of mRNA for L1 than for CRLR, possibly suggesting that L1 may be the major adrenomedullin receptor expressed in this tissue. As it has been reported that adrenomedullin is synthesised predominantly by adrenaline-secreting cells, it appears likely that adrenomedullin is a paracrine regulator in the adrenal medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号