首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of manganese and selected synthetic dyes on the production of manganese-dependent peroxidase (MnP) by Irpex lacteus immobilized on polyurethane foam was studied. In the cultures grown in a medium containing 65 μM Mn (II), up to three various isoenzymes of MnP were resolved by isolectrofocusing, with pI values within the range of 3.50–6.04. In the cultures grown in a medium containing 2.9 mM Mn (II), two new MnP isoforms (pI 3.28, 3.75) were produced. The addition of structurally different synthetic dyes, an azo dye Reactive Orange 16 (RO16), an anthraquinonic dye Remazol Brilliant Blue R (RBBR), and a triphenylmethane dye Bromophenol Blue (BPB), to the fungal cultures grown in the presence of high manganese inhibited the production of low pI MnP isoforms. However, in the presence of BPB a new MnP isoform with pI 5.67 was detected. BPB was found to induce MnP isoforms which are more effective in RBBR decolorization in vitro than the low pI isoforms present in the control cultures.  相似文献   

2.
The mineral Kissiris, which is formed from the thickened foam of volcanic lava, was tested to approximate its mineral composition using energy-dispersive X-ray (EDX) analysis. The solid mineral contains silicon dioxide at about 16 (w/w). The considerable surface roughness of Kissiris along with its extensive porosity made this natural solid cell support an attractive candidate for manganese peroxidase (MnP) production for synthetic dye decolourization, at low cost. The white rot fungus Phanerochaete chrysosporium immobilized on the mineral Kissiris was grown in both stationary and agitated cultures (rotary shaker, 100 rev/min) using either carbon- or nitrogen-limited growth medium to study the ability of the fungus to degrade the synthetic dye methylene blue (MB). The value of residual dye for MB used at 60 ppm was 6% within 8 days of the incubation of the nitrogen-limited culture under the shaken conditions. Production of (MnP) occurred simultaneously in nitrogen-limited culture medium with the added MnSO4 at 100 ppm. The MnP activity was at relatively high level (170 U/l).  相似文献   

3.
In the present paper, a strain of higher MnP producer, Phanerochaete sp. HSD, was screened and the important medium components influencing MnP production were optimized using fractional factorial design and central composite experimental design; statistical analysis suggested diammonium tartrate and Mn2+ were the important factors and under the optimum conditions, MnP activity reached 2613 ± 22 U/l, accorded with the predicted value from response surface analysis. The feasibility of using this fungus to decolourize azo dyes was examined too. Results indicated that crude enzyme solution of it could decolourize three azo dyes efficiently and speedily: for 120 and 350 mg/l of Congo red, 95% decolourization rate was observed at the 5th and 8th hour; for 200, 350 and 600 mg/l methyl orange, 95% decolourization rate was obtained at the 5th, 6th and 9th hour; furthermore, the decolourization rates of 150 and 300 mg/l of Eriochrome black T were up to 97.1% and 91.4% at the 7th and 13th hour, respectively. In addition, MnP played a crucial role in the decolourization process.  相似文献   

4.
A novel dye-decolourizing strain of the bacterium Serratia marcescens efficiently decolourized two chemically different dyes Ranocid Fast Blue (RFB) and Procion Brilliant Blue-H-GR (PBB-HGR) belonging respectively to the azo and anthraquinone groups. Extracellular laccase and manganese peroxidase (MnP) activity were detected during dye decolourization. The involvement of MnP activity was found in the decolourization of both dyes. More than 90% decolourization of PBB-HGR and RFB was obtained on days 8 and 5, respectively at 26 °C under static conditions at pH 7.0. MnP activity was increased by the addition of Mn2+ · At 50 M Mn2+, high MnP (55.3 U/ml) but low laccase activity (8.3 U/ml) was observed. Influence of oxalic acid on MnP activity was also observed.  相似文献   

5.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

6.
Of seven fungal strains tested for their ability to decolourise three structurally diverse synthetic dyes, Phanerochaete sordida, Bjerkandera sp. BOS55, Phlebia radiata, and Phanerochaete chrysosporium had average values of maximum decolourisation rates higher than 0.2 [Absorbance] d–1. All seven fungi produced manganese peroxidase (MnP) but laccase activity was detected only in Phlebia radiata. No lignin peroxidase (LiP) activity was observed.  相似文献   

7.
We investigated the use of solid residues from Pleurotus ostreatus mushroom production in adsorbing and decolorizing different dyes. The solid residue used in this study was composed of hemicellulose and cellulose (52.81 %), acid-insoluble lignin (25.42%), chitin (6.5%), and water extractives (14.82%). After incubating 14% (wt/vol) solid residue in distilled water for 4 h, laccase and manganese peroxidase (MnP) activities were 0.5 U/g and 12 mU/g, respectively. Enzymatic decolorization percentages were up to 100 for azure B (heterocyclic dye) and indigo carmine (indigoid dye), 74.5 for malachite green (MG) (triphenylmethane dye), and zero for xylidine (azoic dye). The optimum temperature for decolorization was in the range of 26 ∼ 36°C for all dyes. Data obtained on adsorption (enzymatic decolorization was prevented with sodium azide) at different dye concentrations and in a pH range of 3 ∼ 7 were used to plot Freundlich isotherms. The spent fungal substrate (SFS) displayed large differences in adsorption capacity, depending on the dye tested. The highest adsorption capacity was observed at pH 3 for MG, while xylidine was slightly adsorbed at pH 3 and 4 and not adsorbed at higher pH values. Laccase and MnP production were affected by the presence of the dyes. The highest enzyme levels were observed in the presence of MG, when laccase and MnP increased 1.39- and 2.13-fold, respectively. Decolorization and adsorption to SFS are both important processes in removing dyes from aqueous solutions. The application of this spent substrate for wastewater treatment will be able to take advantage of both of these dye removal processes. An important problem in bioremediation processes involving microorganisms is the amount of time required for their growth. In this report, we used the spent substrates from mushroom cultivation in wastewater treatment, thus solving the problem of waiting for microorganisms to grow.  相似文献   

8.
Forty-six pulp-bleaching fungi were screened for production of key enzymes for conversion of polychlorinated dibenzo-p-dioxins—lignin peroxidase (LiP), manganese peroxidase (MnP), and manganese-independent peroxidase (MiP)—under various conditions that would allow their utilization in the environment. Of 38 MnP-producing strains with MiP activity, 22 produced LiP. Three of the new isolates, Bjerkandera sp. strains MS191, MS325, and MS1167, were the best producers of the three different peroxidases, and had reasonable growth rates. The most promising Bjerkandera sp. strain, MS325, exhibited significant levels of LiP and MnP activities under various conditions, e.g., nutrient nitrogen-sufficient or -limited conditions, conditions with or without Mn(II), and changes in temperature (15–37°C). Furthermore, the ability of this strain to degrade 1,3,6,8-tetrachlorodibenzo-p-dioxin was confirmed. The results presented here indicate that utilization of Bjerkandera sp. strain MS325 on a practical scale in the environment has several advantages over many white rot fungi, which produce extracellular peroxidases only under specific conditions such as nutrient limitation.  相似文献   

9.
The effect of several laccase activity activators,such as ethanol (novel activator), veratryl alcohol, melanin production and aeration level, on the laccase production by Trametes versicolor (CBS100.29) was investigated. The microorganism was cultivated on nylon sponge, functioning as a physical support on which the mycelium was bound. The cultures with veratryl alcohol showed maximum laccase and manganese‐dependent peroxidase (MnP) activities of 238 U/l and 125 U/l, respectively. The laccase activity found is about two times higher than that attained in the control cultures. On the contrary, MnP activity did not appear to be influenced by the addition of this alcohol. Ethanol‐supplemented cultures led to maximum laccase and MnP activity levels of about 102 U/l and 101 U/l, respectively. These activities were approx. 40% lower than those achieved in the reference cultures. The decolourization of the polymeric dye Poly R‐478 by the above‐mentioned cultures was also investigated. A percentage of biological decolourization of around 90% was achieved with control and veratryl alcohol‐supplemented cultures, whereas with ethanol‐supplemented cultures a slightly lower percentage of around 85% was reached after seven days of dye incubation.  相似文献   

10.
Three new chromatographic forms of Dichomitus squalens manganese-dependent peroxidase (MnP) were isolated from wheat-straw cultures using Mono Q and connective interaction media (CIM) fast protein liquid chromatography. Enzymes revealed identical molar mass of 50 kDa (estimated by SDS-PAGE) and pI values of 3.5, however, they varied in Km values obtained for Mn2+ oxidation. The addition of wood and straw methanol extracts to the cultures showed that the production of MnPs in wheat-straw cultures was influenced rather by the type of cultivation than by phenolic compounds from lignocellulosic material which induced laccase production. The purified CIM1 MnP was able to decolorize selected azo and anthraquinone dyes more rapidly than laccase Lc1. In vitro dye decolorization showed a synergistic cooperation of MnP and laccase. In the case of CSB degradation MnP prevented from the production of a differently colored substance that could be produced after CSB degradation by laccase-HBT system.  相似文献   

11.
Manganese peroxidase, MnP, is one of the major ligninolytic enzymes produced by a number of white-rot fungi. The ability of this enzyme to degrade lignin by the fungus Bjerkanderasp BOS55 has opened its application to related bioprocesses such as recalcitrant-compound degradation and effluent decolorization. The medium reported to induce MnP production is composed of chemical grade reagents, all with relatively high costs for application to detoxification purposes. The use of inexpensive sources for MnP production can bring its implementation closer. For this purpose, dairy residues from cheese processing were considered. MnP production obtained using crude whey as the sole substrate reached appreciable levels, around 190 U L−1, values comparable to those found with synthetic media (between 175–250 U L−1). Thus, this cheese-processing byproduct can be used as an inexpensive alternative for the large-scale production of MnP. Received 14 December 1998/ Accepted in revised form 29 April 1999  相似文献   

12.
The use of ligninolytic enzymes in biotechnological applications requires a highly effective production system, with sufficient amounts of the enzymes to be applied in experimental research and herein after at large-scale operations. To reach this final goal, we propose scale-up of ligninolytic production of one of the most well-known enzymes, Manganese Peroxidase (MnP), by Bjerkandera sp. BOS55. Taking into account previous results obtained in shaken flask cultures, MnP production was attempted in stirred fermenters of 2, 10 and 50 l, with levels of activity comparable to those obtained at a lower scale. Additionally, environmental factors as agitation rate, fungus immobilisation and use of buffer were evaluated to maximise MnP production. A fed-batch strategy was proved to reactivate MnP production and to maintain MnP activity for a longer period of time. Operational parameters, such as pH and Redox potential, monitored along the fermentation were found to be useful indicators of MnP production. These variables experimented drastic changes at the MnP peak production, signalling the right moment to collect the enzyme.  相似文献   

13.
A white rot fungus Thelephora sp. was used for decolourization of azo dyes such as orange G (50 microM), congo red (50 microM), and amido black 10B (25 microM). Decolourization using the fungus was 33.3%, 97.1% and 98.8% for orange G, congo red and amido black 10B, respectively. An enzymatic dye decolourization study showed that a maximum of 19% orange G was removed by laccase at 15 U/ml whereas lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) at the same concentration decolourized 13.5% and 10.8%, orange G, respectively. A maximum decolourization of 12.0% and 15.0% for congo red and amido black 10B, respectively, was recorded by laccase. A dye industry effluent was treated by the fungus in batch and continuous modes. A maximum decolourization of 61% was achieved on the third day in the batch mode and a maximum decolourization of 50% was obtained by the seventh day in the continuous mode. These results suggest that the batch mode of treatment using Thelephora sp. may be more effective than the continuous mode for colour removal from dye industry effluents.  相似文献   

14.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

15.
The decolourization of a mixture of 200 mg L−1 each of Reactive Black 5 and Reactive Red 2 dye was studied in batch experiments using microorganisms growing on forest residue wood chips in combination with or without added white-rot fungus, Bjerkandera sp. BOL 13. The study was performed as a first stage in the development of a relatively simple treatment process for textile wastewater, designed to work in developing countries. Forest residue wood chips contain a mixture of fungi and bacteria which is an advantage when complex molecules should be degraded. The wood chips furthermore provide the microorganisms with carbon source which make the addition of e.g. glucose unnecessary. The results showed that the microorganisms growing on the forest residue wood chips decolourized the mixture of the two dyes; adding extra nutrients approximately doubled the decolourization rate. The time needed for decolourization was approximately 18 days when nutrients were added. Lignocellulosic material is complex and so were the analysis, microorganisms were therefore transferred to ordinary soft wood chips from forest residue wood chips. Decolourization was measured with spectrophotometer and in order to determine intermediates HPLC was used.  相似文献   

16.
The white-rot fungus Bjerkandera sp. BOS55 has been suggested as a good alternative for the production of ligninolytic enzymes, specially Manganese peroxidase (MnP), by its potential ability to degrade complex compounds. However, the application of this fungus requires the complete knowledge of the fermentation pattern in submerged cultures, conditions similar to those existing in industrial size reactors. For this purpose, the nutritional and environmental factors enabling high ligninolytic activity were studied. According to the results, under limitation and sufficiency of nitrogen, there is a threshold concentration for nitrogen from which MnP is produced. However, under nitrogen excess, the ligninolytic stage of the fungus was coincident with growth, with no apparent substrate limitation according to existing levels of carbon and nitrogen. Concerning carbon concentration, MnP synthesis took place independently of glucose concentration, this indicating that carbon limitation does not seem to be the triggering factor for MnP secretion. Other two environmental factors were studied: oxygenation and agitation, but no significant effect on MnP production was observed, a quite different aspect from the behaviour of other known fungi like Phanerochaete chrysosporium.  相似文献   

17.
Many reports describe the decolourization of dyes by fungal enzymes. However, these enzymes do not contribute to dye mineralization but only to its biotransformation into less coloured or colourless molecules persisting in solution. Therefore, it is essential to analyse the identity of the metabolites produced during enzymatic treatments and its biodegradation into an appropriate system. The present work examines the decolourization/detoxification of a simulated effluent (containing Acid Blue 74) by fungal enzymes and proposes a secondary treatment using an anaerobic system to improve the enzymatic decolourization through the complete mineralization of the dye. Ligninolytic enzymes were produced by solid culture using the thermo-tolerant fungus Fomes sp. EUM1. The enzymes produced showed a high rate of decolourization (>95 % in 5 h) and were stable at elevated temperature (40 °C) and ionic strength (NaCl, 50 mM). Isatin-5-sulphonic acid was identified via 1H-NMR as oxidation product; tests using Daphnia magna revealed the non-toxic nature of this compound. To improve the enzymatic degradation and avoid coupling reactions between the oxidation products, the effluent was subjected to an anaerobic (methanogenic) treatment, which achieved high mineralization efficiencies (>85 %). To confirm the mineralization of isatin-5-sulphonic acid, a specific degradation study, which has not been reported before, with this single compound was conducted under the same conditions; the results showed high removal efficiencies (86 %) with methane production as evidence of mineralization. These results showed the applicability of an anaerobic methanogenic system to improve the enzymatic decolourization/detoxification of Acid Blue 74 and achieve its complete mineralization.  相似文献   

18.
Bjerkandera sp. strain BOS55 is a white rot fungus that can bleach EDTA-extracted eucalyptus oxygen-delignified kraft pulp (OKP) without any requirement for manganese. Under manganese-free conditions, additions of simple physiological organic acids (e.g., glycolate, glyoxylate, oxalate, and others) at 1 to 5 mM stimulated brightness gains and pulp delignification two- to threefold compared to results for control cultures not receiving acids. The role of the organic acids in improving the manganese-independent biobleaching was shown not to be due to pH-buffering effects. Instead, the stimulation was attributed to enhanced production of manganese peroxidase (MnP) and lignin peroxidase (LiP) as well as increased physiological concentrations of veratryl alcohol and oxalate. These factors contributed to greatly improved production of superoxide anion radicals, which may have accounted for the more extensive biobleaching. Optimum biobleaching corresponded most to the production of MnP. These results suggest that MnP from Bjerkandera is purposefully produced in the absence of manganese and can possibly function independently of manganese in OKP delignification. LiP probably also contributed to OKP delignification when it was present.  相似文献   

19.
Summary Lignin (LiP) and manganese peroxidase (MnP) excretion by Phanerochaete chrysosporium INA-12 was significantly increased in response to fungal extract supplementation. LiP and MnP production was increased 1.7- and 1.8-fold, respectively, with fungal extracts from agitated pellet cultures of strain INA-12, namely fungal extracts P6 and P4. In cultures supplemented with a fungal extract harvested from static cultures of strain INA-12 (fungal extract S4), LiP and MnP production was increased 1.8- and 1.6-fold, respectively. Succinate dehydrogenase activity, a mitochondrial marker, was significantly enhanced (2.7-fold) in cultures with the addition of fungal extracts. Correspondence to: M. Asther  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号