首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing literature describing the stoichiometry and stability of complexes between A23187 and divalent cations in solution has been extended to include additional transition series cations, the heavy-metal cations Cd2+ and Pb2+, plus seven lanthanide series trivalent cations. Stability constants of 1:1 complexes between the ionophore and the divalent cations vary by 6.2 orders of magnitude between Cu2+ and Ba2+ which are the strongest and weakest complexes, respectively. Considering alkaline-earth and first-series transition cations together, the pattern of stability constants obeys the extended Irving-Williams series as is seen with many nonionophorous liganding agents. Cd2+ and Pb2+ are bound with an affinity similar to those of Mn2+ and Zn2+, whereas the lanthanides are bound with little selectivity and slightly higher stability. Titration of the ionophore in the 10(-5) M concentration range with di- and trivalent cations gives rise first to complexes of stoichiometry MA2 and subsequently to MA as the metal concentration is increased. The second stepwise stability constants for formation of the MA2 species exceeds the first constant by approximately 10-fold. With lanthanides, heavy metals, and transition-metal cations, OH-, at near physiological concentrations, competes significantly with free ionophore for binding to the 1:1 complexes. This competition is not apparent when Ca2+ or Mg2+ are the central cations. Possible implications of the 1:1 complex selectivity pattern, the ionophore-hydroxide competitive binding equilibria, and potential ternary complexes involving 1:1 ionophore:cation complexes and other anions present in biological systems are discussed with respect to the ionophore's transport selectivity and biological actions.  相似文献   

2.
The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somewhat less strongly, with a lower quantum yield, and does not move across the membrane. Complexation of the negatively charged form with divalent cations was measured by the decrease in fluorescence. An apparent rate constant (kapp) for transport of the ionophore across the membrane was determined from the rate of fluorescence changes observed in stopped-flow rapid kinetic experiments. The variation of kapp was studied as a function of pH, temperature, ionophore concentration, membrane lipid composition, and divalent cation concentration and type. Analysis and comparison with equilibrium constants for protonation and complexation show that A23187 and its metal:ionophore complexes bind near the membrane-water interface in the lipid polar-head region. The interfacial reactions occur rapidly, compared with the transmembrane reactions, and are thus in equilibrium during transport. The transport cycle can be described as follows: a 1:1 complex is formed between the membrane bound A23187-(Am-) and the aqueous divalent cation with dissociation constant K1 approximately 4.6 x 10(-4) M. This is in equilibrium with a 1:2 (metal:ionophore) complex (K2 approximately 3.0 x 10(-4) [ionophore/lipid]) that is responsible for transporting the divalent cations across the membrane. The rate constant for translocation of the 1:2 complex is 0.1-0.3 s-1. Dissociation of the complex of the trans side and protonation occur rapidly. The rate constant for translocation of H+ . A23187- is 28 s-1. A theory is presented that is capable of reproducing the kinetic data at any calcium concentration. The cation specificity for ionophore complex transport (kapp), determined at low ionophore concentration for a series of divalent cations, was found to be proportional to the equilibrium constant for 1:1 complexation. The order of ion specificity for these processes was found to be Ca2+ greater than Mg2+ greater Sr2+ greater than Ba2+. Interactions with Na+ were not observed. Maximal values of kapp were observed for vesicles prepared from pure dimyristoyl phosphatidylcholine. Inclusion of phosphatidyl ethanolamine, phosphatidic acid, or dipalmatoyl phosphatidylcholine resulted in lower values of kapp. Calcium transport by A23187 is compared with that of X537A, and it is shown that the former is 67-fold faster. The difference in rates is due to differences in the ability of each ionophore to form a 1:2 complex from a 1:1 complex.  相似文献   

3.
Interactions between the divalent cation ionophore, A23187, and the divalent cations Ca2+, Mg2+, and Mn2+ were studied in sarcoplasmic reticulum and mitochondria. Conductance measurements suggest that A23187 facilitates the movement of divalent cations across bilayer membranes via a primarily electroneutral process, although a cationic form of A23187 does carry some current.On the basis of fluorescence excitation spectra, A23187 can form either a 1:1 or 2:1 complex with Ca2+ in organic solvents. However, in biological membranes, only the 1:1 complexes with Ca2+, Mg2+, or Mn2+ are detected. A23187 produces fluorescent transients under conditions of Ca2+ uptake in sarcoplasmic reticulum, which appear to represent changes in intramembrane Ca2+ content. Changes in A23187 fluorescence due to mitochondrial Ca2+ accumulation are much smaller by comparison and fluorescence transients are not detected.Studies of A23187 fluorescence polarization and lifetimes in biological membranes allow a determination of the rotational correlation time (ρh) of the ionophore. In mitochondria at 22 °C, ρh is 11 nsec in the presence of Ca2+ and Mg2+, and less than 2 nsec in the presence of excess EDTA.The present results are consistent with a model of ionophore-mediated cation transport in which free M2+ binds with A23187 at the membrane surface to form the complex M(A23187)+. Reaction of this complex with another molecule of A23187 at the membrane surfaces results in the formation of electrically neutral M(A23187)2, which carries the divalent cation through the membrane.These results are discussed in terms of physical properties of biological membranes in regions in which divalent cation transport occurs.  相似文献   

4.
The conditions under which ionophore A23187 can be used as a probe of Mg2+ involvement in the reactions of intact (Type A) spinach chloroplasts have been investigated by monitoring ionophore-induced reversal of slow fluorescence quenching. The following observations were made: (1) A23187-dependent reversal of quenching is a strong function of pH. This is consistent with competition between protons and divalent cations for the carboxylic acid moiety of the ionophore. (2) In the presence of exogenous Mg2+, quenching reversal by A23187 is significantly slowed. It is suggested that formation of the dimeric A23187 . Mg2+ complex delays action of the ionophore at the thylakoid membrane by slowing equilibration of the ionophore among chloroplast membrane phases. (3) In the absence of Mg2+, significant interaction of A23187 with certain monovalent cations--Li+ and Na+, but not K+--is observed. Evaluations of the interaction of ionophore A23187 with specific biological systems and inferences of divalent cation involvement, or lack thereof, must take these limitations into account.  相似文献   

5.
Depolarization of plasma membrane potential has a potent inhibitory effect on divalent cation influx catalyzed by the carboxylic ionophores ionomycin and A23187. This effect is observed in different cell models and does not depend on either inhibition of Ca2+-activated cation channels or activation of Ca2+ extrusion mechanisms as suggested previously. A dependence of divalent cation influx on the magnitude of membrane potential is observed also in artificial liposomes. The inhibition of ionophore-dependent divalent cation transport by membrane potential depolarization can be modified varying the ionophore concentration and the external pH. These findings suggest that both neutral and positively charged ionophore-cation complexes can cross the plasma membrane and that their contribution to the overall transport process can be varied according to the experimental conditions.  相似文献   

6.
Patricia M. Sokolove 《BBA》1979,545(1):155-164
The conditions under which ionophore A23187 can be used as a probe of Mg2+ involvement in the reactions of intact (Type A) spinach chloroplasts have been investigated by monitoring ionophore-induced reversal of slow fluorescence quenching. The following observations were made: (1) A23187-dependent reversal of quenching is a strong function of pH. This is consistent with competition between protons and divalent cations for the carboxylic acid moiety of the ionophore. (2) In the presence of exogenous Mg2+, quenching reversal by A23187 is significantly slowed. It is suggested that formation of the dimeric A23187 · Mg2+ complex delays action of the ionophore at the thylakoid membrane by slowing equilibration of the ionophore among chloroplast membrane phases. (3) In the absence of Mg2+, significant interaction of A23187 with certain monovalent cations — Li+ and Na+, but not K+ — is observed. Evaluations of the interaction of ionophore A23187 with specific biological systems and inferences of divalent cation involvement, or lack thereof, must take these limitations into account.  相似文献   

7.
Phospholipid vesicles loaded with Quin-2 and 2'',7''-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) have been used to investigate the effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin. At an external pH of 7.0, a delta pH (inside basic) of 0.4-0.6 U decreases the rate of Ca2+ transport into the vesicles by severalfold under some conditions. The apparent extent of transport is also decreased. In contrast, raising the pH by 0.4-0.6 U in the absence of a delta pH increases both of these parameters, although by smaller factors. The relatively large effects of a delta pH on the transport properties of Ca2+ ionophores seem to reflect a partial equilibration of the transmembrane ionophore distribution with the H+ concentration gradient across the vesicle membrane. This unequal distribution of ionophore can cause a very slow or incomplete ionophore-dependent equilibration of delta pCa with delta pH. A second factor of less certain origin retards full equilibration of delta pCa when delta pH = 0. These findings call into question several ionophore-based methods that are used to investigate the regulatory activities of Ca2+ and other divalent cations in biological systems. Notable among these are the null-point titration method for determining the concentration of free cations within cells and the use of ionophores plus external cation buffers to calibrate intracellular cation indicators. The present findings also indicate that the transport mode of Ca2+ ionophores is more strictly electroneutral than was thought, based upon previous studies.  相似文献   

8.
The cation complexation equilibria between ionophore A23187 and several alkaline earth and first transition series divalent cations have been investigated. Absorption and fluorescence spectroscopy were used to monitor the reactions which were studied in solutions of 80% methanol/water, at 25 degrees C, and under conditions of controlled ionic strength and pH. Titration of the ionophore with divalent cations results first in formation of the dimeric species MA2 and subsequently in the formation of MA+ by disproportionation of the first product. With Zn2+, Ni2+, and Co2+ (above pH approximately 6), a third species is detected which is postulated to be MA.OH. The existence of this species with Mn2+ and alkaline earth cations is uncertain. For formation of MA2, the second stepwise stability constant is similar to or exceeds the first value with all cations studied. However, it is possible to isolate the first reaction and determine accurate stability constants by working at an ionophore concentration of 3 X 10(-8) M or less and by employing pH values which preclude interference by the mixed ionophore/hydroxide species. Under these conditions, the relationship between log KMA' and pH is linear and displays a slope of 1.0. pH-independent stability constants were calculated by using pH-dependent stability constants and the known value of the ionophore's protonation constant in this solvent. The logarithms of the values obtained ranged from 7.54 +/- 0.06 for Ni2+ to 3.60 +/- 0.06 for Ba2+. The selectivity sequence and relative affinities (in parentheses) for the species MA+ are as follows: Ni2+ (977) greater than Co2+ (331) greater than Zn2+ (174) greater than Mn2+ (34) greater than Mg2+ (1.00) approximately equal to Ca2+ (0.89) greater than Sr2+ (0.20) greater than Ba2+ (0.11). Data are discussed in comparison to other studies on the complexation properties of A23187 and in terms of their significance to interpreting the transport properties of this ionophore.  相似文献   

9.
1. A23187 will uncouple electron transport by broken chloroplasts in a divalent cation dependent manner provided that they have been treated with a low concentration of EDTA.2. A23187 stimulates oxaloacetate-dependent oxygen evolution and inhibits phosphoglycerate reduction by intact chloroplasts isolated in a cation-free medium whereas the full effect of nigericin was dependent on the presence of external K+.3. Uncoupling of oxaloacetate reduction by A23187 in intact chloroplasts is inhibited by EDTA and this effect is overcome by excess Mg2+.4. The results suggest that divalent and not monovalent cations are available for collapsing the light-induced H+ gradient within the intact organelle.  相似文献   

10.
The rate of uptake of uridine into the acid-soluble fraction of Novikoff hepatoma cells is inhibited by low concentrations of the ionophores A23187 and gramicidin and other perturbants of intracellular cation levels. Inhibition of uridine uptake by A23187 is dependent on Ca2+ and is reduced by serum and high levels of Mg2+. The effectiveness of A23187 is dependent on the Ca2+/Mg2+ ratio rather than the absolute concentration of either ion. Inhibition of uridine uptake by gramicidin is not significantly affected by serum or divalent cations. Other effectors of monovalent cation flux such as ouabain and valinomycin also inhibit uridine uptake. These results indicate that net uptake of uridine may be influenced by intracellular levels of certain monovalent and divalent inorganic cations.  相似文献   

11.
Sodium inhibits in a dose-related fashion the translocation of calcium from an aqueous milieu into an organic phase containing the divalent-cation ionophore A23187. This inhibitory effect is reproduced by other monovalent cations, modulated by the nature of the anion in the sodium halide, and inversely related to the absolute amount of calcium translocated. The inhibitory effect cannot be attributed to a change in osmolarity or ionic strength, to sequestration of the ionophoretic molecule at the interface between the aqueous and organic phases, or to translocation of sodium or chloride. These findings indicate that sodium may directly affect the handling of calcium by ionophoretic systems specifically mediating the transport of divalent cations.  相似文献   

12.
Summary A standard reaction mixture has been established in which partially purified rat liver phosphatidylinositol exchange proteins sustain a maximal rate of phosphatidylinositol transfer from rat liver microsomes to liposomes. Determination of the transfer kinetics confirms the findings of Brophy et al. (Biochem J. 174:413–420, 1918) that under such conditions a maximum 70–80% of the homogenously radiolabeled, microsomal phosphatidylinositol is exchanged with biphasic kinetics. The phosphatidylinositol exchange proteins thus indicate the presence of three microsomal phosphatidylinositol pools: One pool is not subject to protein-mediated exchange; the other two pools are both exchangeable but are exchanged with significantly different half-lives. Both the divalent cation ionophore, A23187, and the monovalent cation ionophore, valinomycin, significantly enhance phosphatidylinositol transfer in the standard reaction mixture at concentrations 1 to 2 orders of magnitude greater than those sufficient for the ionophores to facilitate cation transport across membranes. The stimulatory effect of each ionophore, however, is not a function of the ionophore/microsome mass ratio in the reaction miture. Although both ionophores increase the relative amount of exchangeable phosphatidylinositol, neither ionophore results in all of the exchangeable phosphatidylinositol being transferred with singlestate kinetics. The evidence demonstrates that A23187 and valinomycin are the first substances found to markedly enhance the reactivity of a microsomal phospholipid class with phospholipid exchange proteins.  相似文献   

13.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

14.
4-Bromo-A23187, a halogenated analog of the widely studied divalent cation ionophore A23187, is a nonfluorescent Ca2+ ionophore suitable for use in the calibration of cytoplasmic free Ca2+ by fluorescent probes. Br-A23187 is shown to saturate Ca2+ sites in quin-2-loaded rat thymic lymphocytes in a manner essentially identical to ionomycin.  相似文献   

15.
The interactions have been studied of a water-soluble, polymeric derivative of prostaglandin B1, PGBX, with human polymorphonuclear leukocytes (PMN). PGBX, which is a potent ionophore of divalent cations, provoked superoxide anion (O2.-) generation and lysosomal enzyme release in cytochalasin B-treated PMN in the presence of extracellular divalent cations (Ca2+, Sr2+, Mg2+, Mn2+, Ba2+). Kinetic and dose-response studies showed that PGBX mimicked te action of ionophore A23187 in PMN. Both ionophores induced superoxide generation and release of enzymes from specific and azurophil granules (lysozyme > beta-glucuronidase) without provoking release of the cytoplasmic marker enzyme lactic dehydrogenase. In contrast, the precursor of PGBX, prostaglandin B1 (PGB1), and arachidonate did not mimic ionophore-induced stimulation of PMN. PGBX induced enzyme release both in the presence of extracellular Ca2+ and Ba2+ (both of which it translocates in model liposomes), whereas A23187 showed specificity for Ca2+ (which it translocates preferentially over Ba2+). These studies indicate that the actions of a water-soluble polymer (PGBX) derived from a naturally occurring prostaglandin (PGB1) on human neutrophils resemble those of a classical ionophore (A23187). Moreover, they provide additional evidence that increments in the intracellular levels of divalent cations may signal stimulus-secretion coupling in human neutrophils.  相似文献   

16.
We have used the divalent cation ionophore A23187 to investigate the hypothesis that cytoplasmic localization of Ca2+ is responsible for localized growth in the alga Micrasterias. In a preliminary study we found that, of the major salts contained in the cell's medium, only CaCl2 was needed for normal development. In cells developing in the presence of A23187 and extracellular Ca2+, we postulated that the ionophore would induce a spatially uniform influx of Ca2+ that would overwhelm endogenous Ca2+ gradients. When developing cells were treated with A23187 and 2 mM CaCl2, we observed a delocalization of the cell's normal pattern of wall deposition. This effect was less pronounced when cells were exposed to A23187 and 2 mM MgCl2. These results support the hypothesis that localized regions of high Ca2+ concentration normally mediate localized expansion of tip-growing lobes in Micrasterias.  相似文献   

17.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics. The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentration of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential. The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane. Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

18.
A23187, a new antibiotic with ionophore properties, uncoupled oxidative phosphorylation in mitochondria which oxidized either malate plus glutamate or succinate. Ca2+, but not Mg2+, enhanced the uncoupling effect. Fluorescence of ANS1 was increased by A23187 suggesting the mitochondrial membranes were de-energized. This de-energization was presumably by activation of the energy-dependent uptake of Ca2+. The steady-state measurements of murexide-divalent cation complexes showed that A23187 caused mitochondria to release the accumulated Ca2+ to the medium. This reduced the transmembrane Ca2+ gradient even though normal active Ca2+ uptake could take place. A23187 inhibited activity of ATPase induced by 2,4-dinitrophenol, valinomycin, and Ca2+. The addition of Mg2+ could prevent this inhibition presumably by maintaining the endogenous Mg2+ concentration. The above metabolic events could be explained by the fact that molecules of A23187 function in the mitochondrial inner membrane as mobile carriers for divalent cations.  相似文献   

19.
Studies utilizing phospholipid vesicle loaded with chelator/indicators for polyvalent cations show that ionomycin transports divalent cations with the selectivity sequence Pb(2+) > Cd(2+) > Zn(2+) > Mn(2+) > Ca(2+) > Cu(2+) > Co(2+) > Ni(2+) > Sr(2+). The selectivity of this ionophore for Pb(2+) is in contrast to that observed for A23178 and 4-BrA23187, which transport Pb(2+) at efficiencies that are intermediate between those of other cations. When the selectivity difference of ionomycin for Pb(2+) versus Ca(2+) was calculated from relative rates of transport, with either cation present individually and all other conditions held constant, a value of approximately 450 was obtained. This rose to approximately 3200 when both cations were present and transported simultaneously. 1 microM Pb(2+) inhibited the transport of 1 mM Ca(2+) by approximately 50%, whereas the rate of Pb(2+) transport approached a maximum at a concentration of 10 microM Pb(2+) when 1 mM Ca(2+) was also present. Plots of log rate versus log ionomycin or log Pb(2+) concentration indicated that the transporting species is of 1:1 stoichiometry, ionophore to Pb(2+), but that complexes containing an additional Pb(2+) may occur. The species transporting Pb(2+) may include H.IPb.OH, wherein ionomycin is ionized once and the presence of OH(-) maintains charge neutrality. Ionomycin retained a high efficiency for Pb(2+) transport in A20 B lymphoma cells loaded with Indo-1. Both Pb(2+) entry and efflux were observed. Ionomycin should be considered primarily as an ionophore for Pb(2+), rather than Ca(2+), of possible value for the investigation and treatment of Pb(2+) intoxication.  相似文献   

20.
Thermodynamic parameters, enthalpy and entropy, for the binding of the divalent cations, Mg+2, Ca+2, Sr+2, Ba+2, and Cd+2, to gramicidin A, incorporated into lysophosphatidylcholine, have been determined using a combination of Tl-205 nuclear magnetic resonance spectroscopy and competition binding. The binding process is thermodynamically driven by the enthalpy and not the entropy. The enthalpy values are related to the process involving the transfer of cations from an aqueous environment to an amide environment. A comparison is made between the thermodynamic parameters for the binding of monovalent and divalent cations to gramicidin A to illustrate the channel blocking ability of the divalent cations with respect to monovalent cation transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号