首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro destruction of phytohemagglutinin (PHA) coated Beta L cells by non-immune human lymphocytes was resolved into two distinct phases--lymphocyte dependent and lymphocyte independent. The initial or lymphocyte-dependent phase occurred within the first 2 hr and proceeded equally well at 34 and 37 degrees C. The amount of lymphotoxin (LT) secreted by PHA-activated human lymphocytes in vitro to PHA stimulation was the same at 34 and 37 degrees C. Antiserum and complement inactivation of the aggressor lymphocytes at various intervals revealed that target cell lysis was lymphocyte independent. However, the latter phase was temperature dependent, i.e., proceeding at the permissive temperature of 37 degrees C, but inhibited at the restrictive temperature of 34 degrees C. Further experiments revealed that LT-induced destruction had the same temperature sensitivity as target cell cytolysis occurring during the lymphocyte-independent step. Trypsin treatment of target cells during an early period of the lymphocyte-independent phase protected the target cell from subsequent death, indicating the aggressor lymphocyte has deposited a cytotoxic effector material on its surface. These results suggest the lymphocyte-dependent stage involves the processes required for the induction of LT synthesis and secretion. The actual cytolysis occurring during the lymphocyte-independent stage may be caused by LT or LT-like material(s) deposited on the target cell surface by the mitogen-activated human lymphocyte.  相似文献   

2.
Antisera produced in rats by immunization with alloimmune murine C57Bl/6 anti-P815 splenic lymphocytes or purified T cells activated in vitro by coculture with phytohemagglutinincoated L-929 cells were found to inhibit the in vitro cytolytic action of in vivo and in vitro alloimmune C57Bl/6 anti-P815 cytotoxic T cells in a 4-hr chromium-51 release assay. The rat anti-murine-activated lymphocyte (anti-MAL) or antiactivated T-cell (anti-ATC) serum inhibited lysis in the absence of exogenously added complement activity and were not directly cytotoxic to CTL. Absorption of anti-MAL with target cells P815, L-929, EL-4, and normal C57Bl/6 lymphocytes removed a limited amount of the CTL-inhibitory activity. In contrast, lectin-activated alloimmune lymphocytes fully absorbed the inhibitory activity indicating these antisera preferentially recognize unique antigenic determinants associated with the activated CTL cell surface. The anti-ATC was found to block alloimmune lysis by CTL from several inbred mouse strains suggesting these antisera recognized antigenic determinants of a common lytic mechanism. A kinetic analysis of the inhibitory activity of the anti-MAL on the CTL reaction scheme revealed this antiserum inhibited lysis at a post-Ca2+-dependent step, presumably during the target cell lytic phase. This result suggests the rat antiserum can neutralize the CTL lytic mechanism.  相似文献   

3.
The present study examines and compares the cytolysis of K-562 and MOLT-4 cells mediated by human natural killer (NK) cells from fresh peripheral blood and lymphotoxins (LT) derived from human lymphoid cell populations after lectin stimulation in vitro. Lymphotoxins were obtained from 5-hr concanavalin A (Con A)-restimulated human peripheral blood lymphocytes (PBL) which were precultured for 5 days in medium and fetal calf serum or with allogeneic human B-lymphoid cell lines. Two classes of probes were employed in both direct (cell) and indirect (supernatant) induced target-cell lysis: (a) various saccharides and (b) antibodies reactive with human LT forms. Two sugars, N-acetylglucosamine and α-methylmannoside, were able to inhibit direct cell lysis of both MOLT-4 and K-562 target cells. However, saccharide inhibition was distinct for each type of target even when effector cells were obtained from the same donor. These same saccharides were also able to inhibit 20–30% of the total LT activity in a supernatant for L-929 cells and 50–90% of the lytic activity on MOLT-4 cells. Anti-human F(ab′)2 (IgG) and rabbit anti-α2 LT sera blocked direct cell lysis of MOLT-4 and K-562 targets in 50% of the experiments. The anti-α2 LT serum only recognizes a portion of the LT forms in these supernatants. These results reveal that, while both direct and indirect cell lysis are complex phenomena, they may both occur in some cases by a common mechanism(s).  相似文献   

4.
Materials with LT activity present in supernatants from PHA stimulated human lymphocytes in vitro are very heterogeneous and can be separated into multiple molecular weight classes, termed complex, α, β, and γ. Several of these classes can be further resolved into subclasses by other physical and chemical methods. The immunologic relationships of these materials one to another were examined employing various rabbit anti-humn LT sera which will neutralize LT activity on L-929 cells in vitro. These studies reveal: (a) LT activities are due to a distinct group of substances which are immunologically related one to another and can exist in several molecular weight forms; (b) a high MW class of molecules, termed complex, appears to contain all currently known LT classes and subclasses; (c) LT classes and subclasses both have common (public) and discrete (private) antigenic specificities; (d) human LT classes and subclasses do not appear to share Ag determinants with materials with LT activity released by lectin stimulated lymphoid cells from rabbit, rat, hamster, guinea pig, or mouse; and (e) human LT molecules are not immunologically related to cell toxins released by glass adherent human peripheral blood monocytes or PMN cells. These data indicate human LT molecules form a “discrete system” of lymphocyte derived cell toxins, which can associate together into various related but different MW forms in the supernatant.  相似文献   

5.
We have investigated the effects of inhibitors of cellular protein synthesis (emetine, cycloheximide) and secretion (colchicine, cytochalasin B) on the capacity of primary or secondary lectin-activated human lymphocytes to release LT molecules or to cause lectin-induced destruction (LICC) of murine L-929 cells in vitro. Our findings reveal: (a) agents which inhibit protein synthesis or secretion block the release of LT activity into the supernatant and LICC when primary lectin-stimulated human adenoid lymphocytes are employed as effector cells; (b) these same agents are ineffective at blocking LT release or LICC when 3- or 5-day lectin-prestimulated lymphocytes are employed; and (c) anti-human α-LT serum blocks LICC of L-929 cells mediated by primary or secondary lectin-activated human lymphocytes. The difference in participation of effector cellular processes in LICC between primary and secondary lectin-stimulated cells correlates with the findings that preactivated lymphoid cells possess high levels of preformed intracellular, as well as membrane associated, LT molecules, and that release of these materials into the supernatant or delivery to the target cell can occur independently of active protein biosynthesis or classical secretory systems.  相似文献   

6.
We have cloned lines of IL 2-dependent human T cells derived from alloantigen, soluble antigen (tetanus toxoid), mitogen, or IL 2-stimulated peripheral blood lymphocytes and characterized their surface marker expression and cytolytic activity. The surface phenotype and cytolytic function was compared with the ability of these T cell clones to release cytotoxic lymphokines in response to mitogenic lectins. The cytotoxins released by these CTL clones were detected on the murine L929 target cells in a 16-hr assay. All of the T cell clones, whether stimulated by HLA alloantigens, tetanus toxoid, or mitogens, exhibited killer cell activity and the capacity to secrete a soluble cytotoxin(s). Specific polyclonal antisera to recombinant human tumor necrosis factor (rTNF) and human alpha-lymphotoxin (alpha LT) were unable to neutralize the cytotoxic activity released by most of these CTL clones. These results indicate that human CTL produce a novel antigenic form(s) of cytotoxin that we have termed CTL-toxin. Supernatants from several CTL clones yielded a cytotoxic activity that was partially neutralized (10 to 40%) by saturating levels of anti-TNF (but not anti-alpha LT) indicating that human CTL may be capable of producing a TNF-like molecule. Only two out of 60 CTL clones studied thus far produced a cytotoxic activity that was partially neutralized by anti-alpha LT (20 to 40%). Collectively, these results suggest that although both the CD4 and the CD8 subpopulations of human cytotoxic T cells may be capable of releasing several types of cytotoxins in response to mitogenic signals, the predominant cytotoxin is distinct from alpha LT and TNF.  相似文献   

7.
Four distinct sublines of mouse L 929 cells (termed alpha, beta, gamma, and delta) were derived and shown to differ markedly in their in vitro sensitivity to human lymphotoxin (LT). The alpha L cell is most sensitive and is rapidly destroyed by very low dilutions of LT. This cell is 100 times more sensitive to LT than the most resistant (delta) L cell. The highly lymphotoxin-sensitive alpha cell makes it possible to reproducibly detect LT activity in as little as 0.0005 ml of supernatant medium. Additional studies revealed a direct correlation between the sensitivities of the four L cell sublines to LT and to direct cytolysis mediated by mitogen-stimulated human lymphocytes. The alpha, beta, gamma, and delta L cells were shown to be equally sensitive to antibody-mediated complement-dependent lysis, indicating that the sequence of sensitivities of these L cell sublines to the direct lymphocyte and to LT does not merely reflect a general susceptibility to cell destruction. These results lend further support to the view that lymphotoxin is an important mediator of in vitro target cell destruction by human effector lymphocytes.  相似文献   

8.
Goat and rabbit anti-human lymphotoxin sera, IgG and F(ab')2 reagents were investigated for their capacity to effect a specific alloimmune lymphocyte-mediated cytotoxic reaction. The cytotoxic reaction employed human peripheral blood or adenoid lymphocytes sensitized in MLC to allogeneic B lymphocyte cell lines and lysis was measured in a short-term 51Cr-release assay. A polyspecific anti-LT sera (anti-WS), made against unfractionated whole supernatants from lectin-activated lymphocytes and its IgG and F(ab')2 fragments, was found to be a potent inhibitor of this reaction when the anti-WS reagent was present throughout the assay period. Absorption studies indicated the anti-WS was inhibiting cytolysis at the level of effector cell or its products. Two broadly defined antibody specificities were involved in the cytolytic-inhibitory activity of the polyspecific anti-LT; i) antigens present on the normal lymphocyte cell surface; and ii) lymphocyte surface antigens associated with activated cells. These results correlate with the previously defined antigenic structure of the LT Cx and alpha H classes. Anti-LT sera reactive with the smaller m.w. alpha and beta classes and subclasses were not inhibitory, although the anti-beta sera showed a moderate enhancing activity. The results indicated that several anti-LT antibody specificities may be required to inhibit alloimmune cytolysis. The results suggest LT molecules may mediate lymphocyte-induced alloimmune cytolysis as a multi-component toxin system, rather than as an individual toxin.  相似文献   

9.
Lymphotoxin (LT), and proliferation inhibition factor (PIF) activities found in 5-day supernatants of mitogen-activated human lymphocytes (SAL) were further compared. In agreement with previous results, the activities could not be distinguished functionally. Quantitative differences in the amount of activity detected in the SAL could be accounted for on the basis of target cell differences, concentration of the lymphocyte effector molecules in the supernatant, and the parameter employed to assess cell function. Growth inhibitory activity detected at high supernatant dilutions was completely reversible, whereas the cytotoxic activity detected at low supernatant dilutions was irreversible. When the active medium was fractionated on DEAE, two peaks of inhibitory activity were detected. Depending upon the amount of activity and target cell, both peaks of activity were growth inhibitory or cytotoxic. Since both peaks of material affected HeLa and L-929 cells, the materials were not species specific. Thus, it appears that cloning inhibitor factor, LT, and PIF activities may actually be measures of the same stable materials found in 5-day activated lymphocyte supernatants.  相似文献   

10.
Supernatants obtained from lectin-restimulated, preactivated, human peripheral blood lymphocytes rapidly released (5–24 hr) high levels of lymphotoxin (LT) activity in vitro. Peripheral blood lymphocytes were preactivated by coculturing with either fetal calf serum or with allogeneic continuous B-cell lines (LCCL) which were treated with mitomycin C. These Supernatants contained a population of L-929 cell-lytic LT forms which also selectively bind to the NK-sensitive K-562 cell. However, lytic LT forms for L-929 cells from cPBL and LCCL cultures did not bind to the NK-sensitive MOLT-4 or NK-resistant Raji cells. Additional studies reveal these supernatants contain a second set of LT forms which have cell-binding and cell-lytic activity detectable on MOLT-4 and K-562 cells in a 12 to 18 hr 51Cr-release assay. Cell-lytic form(s) for the MOLT-4 and K-562 cells were not stable for more than a week at ?20°C. These findings indicate that materials with LT activity are heterogeneous with respect to their capacity to recognize common and discrete cell-surface components on different types of target cells in vitro.  相似文献   

11.
A clone of the continuous human T cell line HUT-102, termed YM 1.2, can spontaneously release alpha-LT in vitro. However, when stimulated with phorbol myristic acetate, these cells release other LT forms. These LT forms were purified to homogeneity by DEAE chromatography, column isoelectric focusing, and polyacrylamide gel electrophoresis. One LT form, termed LT-2, is a 79,000 m.w. component in aqueous solution and composed of 21,000 m.w. subunits. This form is immunologically related to macrophage-derived TNF and has a lytic capacity in vitro on K-562, Molt-4F, and Raji cells similar to that described for cytotoxins derived from NK effector cells, termed NK-CF. A second LT form, termed LT-3, is a single 69,000 m.w. peptide which could not be reduced into the smaller subunits. This form expresses antigens in common with both alpha-LT and TNF, because both anti-LT and anti-TNF were required to completely neutralize cell lytic activity in vitro. Functional testing revealed that the LT-3 form is lytic on all continuous cells tested in vitro, including NK-resistant target cells. The LT-3 component appears similar by immunologic, biochemical, and functional criteria to the LT form derived from primary human cytolytic T cells in vitro. At the levels tested, none of these LT-TNF forms had measurable effects on primary fibroblasts in vitro.  相似文献   

12.
A thymic lymphoblastoid cell line derived from a New Zealand Black mouse produces murine leukemia virus (MuLV) and was used as a target in model systems for the in vitro study of antibody-dependent cellular cytotoxicity (ADCC). Several human lymphoblastoid cell lines were investigated as potential effector cells. The most promising (Raji cells) bound to antibody-coated target cells but caused only modest levels of ADCC at 25:1 effector-to-target cell ratio with substantial lysis in the absence of antiserum. Human peripheral lymphocytes were active as effector cells in ADCC at a 5:1 ratio and produced no lysis in the absence of antibody. These cells were used to demonstrate that high dilutions of rabbit antisera to MuLV antigens p30, p15, p12, and p10 were capable of mediating lysis of MuLV-producing target cells but not of a virus-negative murine cell line. A murine antiserum to Thy 1.2 and three caprine antisera to MuLV antigens that were active in complement-mediated cytotoxicity functioned poorly in inducing ADCC; however, rabbit antisera to similar antigens were 16- to 512-fold more efficient in cell-mediated than in complement lysis. The inefficiency of goat antisera was not due to shedding of cell surface antigens or generation of blocking factors but rather to lack of lytic interaction of antibody-coated targets with the effector cells.  相似文献   

13.
The cytotoxic lymphokine, lymphotoxin (LT), has been shown to possess antitumor effect in vitro and in vivo. We examined the effect of the combination of partially purified LT with anti-cancer drugs and elevated temperatures on mouse transformed fibroblast cell line, L-929, and two human carcinoma of the cervix cell lines, HeLa and ME180. The cells were treated for 7 hr with Adriamycin, cisplatin, or bleomycin. These cells were then incubated for 24 hr in the presence of LT. At the end of the incubation period, cytotoxicity was measured by the neutral red dye uptake assay. There was 10- to 47-fold potentiation of cytotoxicity of LT on L-929 cells. The potentiation of cytotoxicity on human carcinoma of cervix cell lines ranged from 3- to 23-fold. L-929 cells and ME180 cells were incubated for 7 hr at 40 or 42 degrees C followed by 24 hr of incubation in the presence of LT. The elevated temperature treatment also enhanced (5- to 9-fold) the cytotoxic effect of LT. DNA, RNA, and protein syntheses of the ME180 cells was measured following incubation at 42 degrees C. It was observed that all three parameters were suppressed by incubation at this temperature. It was, therefore, possible that the repair of LT damaged cells was hampered by the elevated temperature treatment. It is suggested that LT may have a potential as an anti-tumor agent in combination with selected therapeutic drugs and hyperthermia.  相似文献   

14.
Several cloned lines of IL 2-dependent human T cells derived from alloantigen, mitogen, or IL 2-stimulated peripheral blood lymphocytes were examined for their surface marker expression, cytolytic activity in a 51Cr-release assay, and capacity to release cytotoxic lymphokines. Thirty cell lines exhibiting either antigen-specific natural killer cell activity or lectin-dependent killer cell function, which expressed either the CD4 or CD8 surface differentiation markers, were capable of producing cytotoxin(s) in response to the lectins phytohemagglutinin and concanavalin A. Cytotoxin activity was detected on the murine L929 target cell in a 16-hr cytotoxicity assay. In contrast, several nonlytic T cell tumor lines failed to produce a soluble cytotoxin. Antibodies capable of neutralizing human alpha-lymphotoxin were completely ineffective in inhibiting the cytotoxin(s) produced by any of the cytotoxic T lymphocytes (CTL) cell lines. Comparative gel filtration and HPLC hydrophobic chromatography of alpha-lymphotoxin and CTL toxin produced by the CTL-830.B2 clone revealed significant differences in their elution profiles. The CTL-produced toxin and alpha-lymphotoxin exhibited similar kinetics of lysis of the L929 target cells, with 50% target cell lysis occurring at 10 hr. These data indicate human CTL produce a cytotoxin(s) antigenically distinct from alpha-lymphotoxin and imply that human cytolytic effector T cells are not the cellular source for the production of human alpha-lymphotoxin. The relationship of alpha-lymphotoxin and CTL toxin production was investigated in unseparated peripheral blood mononuclear cells stimulated with lectins or IL 2 for 1 and 5 days. Anti-alpha-lymphotoxin antibodies were capable of neutralizing only 30 to 50% of the cytotoxic activity in 24-hr supernatants. Cytotoxic activity in supernatants harvested after 120 hr stimulation with PHA or Con A was neutralized 70 to 100%, whereas the toxin(s) released from IL 2-stimulated lymphocytes was only neutralized 30%. These data suggest the observed heterogeneity of cytotoxic lymphokines produced by unseparated mononuclear cells depends in part on the subpopulations of effector cells responding to a given stimulus and the capacity of different subpopulations to produce distinct cytotoxins.  相似文献   

15.
Using a new device which increases the sensitivity of detection of specific immune lysis of target cells by labeling them with [35S]-methionine, the in vitro cell-mediated cytotoxic response of spleen lymphocytes and peripheral blood lymphocytes from chickens vaccinated with herpesvirus of turkey (HVT), O1 strain, against MSB-1 line cells was clearly demonstrated. The cytotoxic activity was clearly inhibited by pretreatment of effector lymphocytes with anti-T lymphocyte serum and complement. The activity was greater using T cells purified from spleen lymphocytes and peripheral blood lymphocytes than with the unfractionated cells, indicating that T lymphocytes play the main role in effector activity. Using sera from HVG-vaccinated chickens, no significant cytotoxic effects were detected in the complement-dependent antibody cytotoxicity test against MSB-1 cells. These results suggest that cellular immunity against the surface antigen of Marek's disease (MD) lymphoma cells is mainly related to the preventive mechanism against MD incidence by HVT vaccination.  相似文献   

16.
The present studies examine the in vitro cell-lytic capacity of various molecular weight (MW) human lymphotoxin (LT) classes obtained from lectin-activated normal or immune lymphocytes on allogeneic target cells. The findings reveal that the high-MW complex class of LT is up to 100 times more effective than the smaller MW LT forms (α, β, and γ) in causing lysis of various allogeneic cell types including lymphoid cells in vitro. Moreover, the data suggest that lectin-stimulated alloimmune cells (MLC sensitized) release complex LT forms in association with a specific antigen-binding receptor(s), and that these complexes are from 3 to 10 times more effective on the sensitizing target cell than complexes obtained from lectin-stimulated nonimmune cells. Positive evidence that complex-induced lysis involved LT was indicated by the finding that lysis was completely neutralized by incubation with heterologous antisera directed against a refined human α2-LT subclass (anti-α2) and partially neutralized with anti-human Fab2′ serum. These findings support the concept that LT molecules may represent a system of related cell-lytic molecules. While the smaller MW forms are only weakly lytic by themselves, they can be assembled into highly lytic complexes which may be focused or directed by an antigen-binding receptor(s).  相似文献   

17.
Tumor cell lysis can be enhanced significantly in vitro when heteroconjugate (HC) antibodies (anti-CD3 x anti-tumor mAb) are used to specifically direct lymphocyte effector cells to the tumor cell target. In order to effectively utilize HC antibodies in an immunotherapy protocol, methods must be identified for the optimum expansion, activation, and retargeting of lymphocyte-effector populations from cancer patients. In this study, we have compared the proliferative responses of different normal and renal cell carcinoma (RCC) patient lymphocyte preparations (PBL, tumor-infiltrating lymphocytes) stimulated in vitro for periods up to 12 days with a variety of growth factor combinations (anti-CD3, rIL-2, rIL-4). These activated lymphocyte preparations were then tested in vitro for their ability to kill RCC tumor cells and tumor cell lines in the presence of HC preparations (anti-CD3 mAb covalently linked to mAb reactive to different RCC tumor-associated Ag). RCC patient PBL cultured with anti-CD3 plus rIL-2 for 12 days resulted in a 3- to 160-fold expansion of effector cells. These cells, as well as tumor infiltrating lymphocytes, when retargeted with appropriate HC antibodies were capable of mediating high levels of killing of autologous tumor cells. No constitutive autologous anti-tumor cell response was detected in the absence of added HC antibodies. Of the five anti-RCC mAb tested (A6H, K29, K20, UR07, and URO 3), HC containing URO 3 x anti-CD3 and K20 x anti-CD3 elicited the highest level of tumor cell lysis by the activated lymphocyte effector cells. Together these results demonstrate that HC antibodies may be a useful imunotherapeutic reagent for directing the killing of RCC tumor cells by autologous lymphocytes.  相似文献   

18.
The present studies demonstrate that a portion of lymphotoxin (LT) cell-lytic activity present in supernatants from: 1) lectin (Con A, PHA) stimulated nonimmune; or 2) antigen (soluble or cellular) stimulated immune human lymphocytes in vitro, is associated with immunoglobulin (Ig) or “Ig-like” receptor molecule(s). This concept was supported by three findings: 1) LT activity in these supernatants was partially inhibited by heterologous anti-human (IgG) Fab′2 antisera; 2) LT activity present in soluble antigen stimulated immune human lymphocyte supernatants could specifically bind to and be eluted from Sepharose 4B columns to which the specific stimulating antigen was covalently attached; and 3) LT activity present in primary one-way mixed lymphocyte culture (MLC) supernatants could be removed by absorption on the specific stimulator cells. The amount of total LT activity found to be associated with “Ig” in these supernatants was variable, but ranged from 5 to 20% in lectin stimulated cell supernatants to 20 to 50% in antigen or MLC stimulated supernatants. Physical-chemical studies on the molecular weight class of LT molecules having reactivity with anti-Fab′2 sera, as well as antigen binding capacity, revealed these properties reside in the large (>200,000) MW LT class, termed complex. The nature and biological significance of these “antigen specific” LT complexes, as they relate to mechanisms of cytotoxicity in vitro, will be discussed.  相似文献   

19.
Sensitization of mouse splenic lymphocytes in vitro with sodium borohydride, suggesting that the biologic effects of sodium periodate are-treated autologous spleen cells stimulated a one-way mixed lymphocyte reaction and led to the generation of thymus-derived cytotoxic effector cells. These effectors were capable of lysing in 4 hr periodate-treated syngeneic and, to a lesser extent, periodate-treated allogeneic target cells. These results suggest that sensitization by periodate-treated autologous cells could result either from a specific reaction to modified self components or from a nonspecific mitogenic stimulation. Effector cells generated by allogeneic sensitization were detected on periodate-modified targets, irrespective of the H-2 antigens expressed by the targets. The effects of periodate modification on both stimulator and target cells were reversible by sodium periodate are dependent on the formation of a free aldehyde group on cell surface glycoproteins. Pretreatment of stimulator cells with neuroaminidase prevented the effect of periodate treatment, suggesting that the sensitization involves oxidized sialic acid residues. During the 4-hour 51Cr-release assay periodate-treated targets could be used to detect cytotoxic effector cells of any specificity. Fresh spleen cells and lymphocytes cultured for 5 days without antigen or in the presence of lipopolysaccharide did not lyse periodate-treated targets. An increasing level of cytotoxicity was detected on periodate-treated targets when the effector cells were generated, respectively, by stimulation with concanavalin A, by sensitization with periodate-modified autologous cells. Although the lysis of periodate-treated targets is itself nonspecific, effector cell specificity could be determined by selective blocking of the lytic phase with cells syngeneic to the stimulators. These results indicate that a nonspecific interaction can occur between lymphocytes and periodate-treated target cells, but that this interaction leads to lysis only when the lymphocytes were activated to become cytotoxic effectors.  相似文献   

20.
The recently described L-arginine-dependent nitric oxide (NO) pathway has been proposed to interact synergistically with the TNF pathway in murine macrophage-mediated tumor cytotoxicity in vitro. We have employed an experimental construct in which these two pathways were independently expressed by two different effector cell populations. The TNF-dependent pathway was committed by murine 3T3 cells transfected with the cDNA encoding human pro-TNF. The NO pathway was executed by the murine EMT-6 mammary adenocarcinoma cell line treated with murine rIFN-gamma and LPS. Controls for the TNF pathway committed by the transfectant included lysis of the TNF-sensitive murine L929 cell in coculture, secretion of TNF, and absence of nitrite synthesis. For the NO pathway controls included lysis of the murine P815 mastocytoma cocultured with activated EMT-6 cells that had been pretreated with murine rIFN-gamma and LPS, production of nitrite by this activated effector cell, and an absence of TNF secretion. The target cell panel included L929, EMT-6, P815, and murine B16 melanoma and TU-5 sarcoma cell lines. All targets on this panel were susceptible to lysis by LPS-triggered murine bacillus Calmette-Guérin-activated macrophages. The 3T3 transfectant caused significant lysis of cocultured L929 and TU-5 targets. The EMT-6 effector cell only caused significant lysis of the P815 target. When both effector cells were cocultured with these target cells, lysis of the P815 target was observed to be additive or superadditive; however, for all the other targets, cytotoxicity was comparable with or subadditive compared with that seen with the 3T3 transfectant effector cell alone. Thus, these two pathways do not appear to account for the broad, potent tumoricidal activity observed for activated macrophages in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号