首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Helical coiled-coils and bundles are some of the most common structural motifs found in proteins. Design and synthesis of alpha-helical motifs may provide interesting scaffolds that can be useful as host structures to display functional sites, thus allowing the engineering of novel functional miniproteins. We have synthesized a 38-amino acid peptide, alpha2p8, encompassing the alpha-helical hairpin present in the structure of p8MTCP1, as an alpha-helical scaffold particularly promising for its stability and permissiveness of sequence mutations. The three-dimensional structure of this peptide has been solved using homonuclear two-dimensional NMR techniques at 600 MHz. After sequence specific assignment, a total of 285 distance and 29 dihedral restraints were collected. The solution structure of alpha2p8 is presented as a set of 30 DIANA structures, further refined by restrained molecular dynamics, using simulated annealing protocol with the AMBER force field. The RMSD values for the backbone and all heavy atoms are 0.65+/-0.25 and 1.51+/-0.21 A, respectively. Excised from its protein context, the alpha-hairpin keeps its native structure: an alpha-helical coiled-coil, similar to that found in superhelical structures, with two helices spanning residues 4-16 and 25-36, and linked by a short loop. This motif is stabilized by two interhelical disulfide bridges and several hydrophobic interactions at the helix interface, leaving most of its solvent-exposed surface available for mutation. This alpha-helical hairpin, easily amenable to synthetic chemistry and biological expression system, may represent a stable and versatile scaffold to display new functional sites and peptide libraries.  相似文献   

2.
Nearly all of the alkaline protease found in the occlusion bodies of baculoviruses (polyhedra for nuclear polyhedrosis and capsules for granulosis viruses) (Baculovirus, subgroup A and B, family Baculoviridae) can be specifically extracted under high ionic concentration. The extraction is directly proportional to the concentrations of NaCl up to 0.25 m. It is not dependent on pH, species of ions, temperature, and incubation time. The protease is reabsorbed under low ionic concentration by protease-extracted and by heat-treated capsules and polyhedra. The protease from Streptomyces griseus is not absorbed. This indicates that the occlusion body proteins have distinct affinity for certain alkaline proteases.  相似文献   

3.
The cannabinoid receptor 1 (CB1), a member of the class A G‐protein‐coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt‐bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt‐bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt‐bridge resulted in substantial increase in G‐protein coupling activity and reduced thermal stability relative to the wild‐type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt‐bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt‐bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general. Proteins 2013; 81:1304–1317. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号