首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Aequorin is a bioluminescent protein which consists of a polypeptide chain (apoaequorin), coelenterate luciferin, and bound oxygen. Aequorin produces blue light upon binding Ca2+. We have isolated six recombinant pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic pBR322 plasmids which contain apoaequorin cDNA sequences. A mixed synthetic oligonucleotide probe was used to identify these cDNAs. An extract of an E. coli strain possessing the largest cDNA contained apoaequorin. This apoaequorin can be converted to aequorin in the presence of coelenterate luciferin, 2-mercaptoethanol, and O2. This cDNA is therefore apparently full-length.  相似文献   

4.
5.
6.
7.
Mammalian and Drosophila homologues of Baf57 have been previously isolated as being a subunit of SWI/SNF-like chromatin remodeling complexes. Here, we report the cloning and developmental expression of Xenopus Baf57. We isolated XBaf57 by using an expression cloning approach to identify novel modulators of Xenopus Smad7. XBaf57 co-operates with XSmad7 by increasing the expression of neural markers in ectodermal explants. XBaf57 is expressed in the ectoderm and pre-involuting mesoderm during gastrula stages and in the central nervous system during neurula and tailbud stages. These results raise the possibility that XBaf57 (or XBaf57-containing chromatin remodelling complexes) may be involved in the process of neural induction during Xenopus embryonic development.  相似文献   

8.
9.
10.
11.
12.
With the intention of studying calcium-dependent ciliary reversal in Tetrahymena, we isolated a Tetrahymena calcium-binding protein of 10 kDa (TCBP-10) which was not calmodulin and reported its properties (Ohnishi, K., and Watanabe, Y. (1983) J. Biol. Chem. 258, 13978-13985). However, immunoblotting with an antiserum against TCBP-10 and sequencing of the cDNAs and partial genomic DNAs for this calcium-binding protein prove that this previously reported TCBP-10 is the degraded product of a 25-kDa calcium-binding protein. Thus, we correct the name of the protein from TCBP-10 to TCBP-25. From the analysis of the cDNA for TCBP-25, it is shown to be composed of 218 amino acid residues and its molecular weight is estimated to be 24,702. This protein is predicted to contain four EF-hand-type calcium binding domains and to be a member of the calmodulin family. Little sequence homology with other proteins was shown by a computer search, except in the EF-hand regions. The special feature of TCBP-25 is that the distance between calcium-binding domains II and III is extraordinarily long for a calmodulin family protein having four calcium-binding domains. The genomic DNA for TCBP-25 contains two introns situated at short distances before calcium-binding domains I and III, implying gene duplication in genealogy.  相似文献   

13.
14.
15.
cDNA clones were isolated by screening a human thyroid carcinoma lambda gt11 library with immunoglobulins purified from serum of a patient with autoimmune Graves' disease. One clone (ML8) containing a 1.25-kilobase (kb) insert hybridized with a single 2.0-kb poly(A+) mRNA in human thyroid and lymphocytes but not in human brain, liver, kidney, or muscle. In addition, this probe also hybridized with a single 2.0-kb poly(A+) mRNA from a rat thyroid cell line (FRTL-5). An apparently full length 2,074-base pair (bp) human cDNA was obtained and sequenced. The nucleotide sequence of the 2,074-bp cDNA includes a 5'-noncoding sequence of 17 bp, a 1827-bp open reading frame, and a 222-bp 3'-noncoding sequence. The canonical polyadenylation signal AATAAA is present 18 bp upstream of the poly(A) tail. This cDNA encodes a 69,812-dalton protein with two potential N-linked glycosylation sites and at least one potential membrane spanning domain. Immunoprecipitation of the in vitro translated protein by sera from several patients with Graves' disease argues that the 69,812-dalton protein is an autoantigen.  相似文献   

16.
《Gene》1997,186(2):161-165
To identify the bovine mannan-binding protein (MBP), a search for the cDNA homologue of human MBP was carried out. cDNA clones encoding bovine MBP were isolated from a bovine liver cDNA library using a cDNA fragment encoding a short collagen region, neck domain and carbohydrate recognition domain of human MBP. The cDNA carried an insert of 747 bp encoding a protein of 249 amino acid (aa) residues with a signal peptide of 19 aa. The mannan-binding protein fraction of bovine serum that eluted with 100 mM mannose from a mannan-Sepharose column was analyzed under reducing conditions by SDS-PAGE. The major band of 33 kDa obtained reacted with anti-human MBP rabbit serum. The partial aa sequence of the purified 33-kDa protein was identical to the aa sequence deduced from the obtained cDNA. Results of the passive hemolysis experiment using sheep erythrocytes coated with yeast mannan suggest that this MBP has the ability to activate complement. Northern blot analysis showed a 1.8-kb mRNA that was expressed only in the liver. Based on results of genomic analysis, this bovine MBP is likely to be a homologue of human MBP and to also have homology to rat and mouse MBP-C which are localized in liver cells rather than to rat and mouse MBP-A found in serum. Alignments of bovine collectins show that bovine MBP cannot be included among the other bovine collectins, such as bovine SP-D, conglutinin and CL-43. Finally, these genomic and biological analyses indicate that the cDNA obtained here encoded a bovine serum MBP.  相似文献   

17.
The human neuronal apoptosis inhibitory protein (NAIP) gene was originally discovered because of its deletion in infantile spinal muscular atrophy (SMA), a childhood genetic disorder characterized by motor neuron loss and progressive paralysis with muscular atrophy. Although SMA is now known to be caused by deletions of survival motor neuron (SMN), the fact that NAIP is an anti-apoptotic protein is consistent with the NAIP gene modifying SMA severity. Here we report the cloning of a 1.5 kb rat NAIP cDNA fragment which contains BIR-3 (third baculovirus inhibitory repeat) domain. This fragment shows 78% homology to the human NAIP and 86% homology to the murine counterpart. We have investigated the distribution of NAIP mRNA expressing neurons by in situ RT-PCR technique in the rat central nervous system (CNS). Although all of the neurons appeared to express NAIP mRNA ubiquitously, pronounced elevation of NAIP mRNA expression was observed in the areas innervated by glutamatergic neurons after kainic acid (KA) injection. We have raised an anti-rat NAIP antiserum in rabbits using NAIP cDNA and recombinant rat NAIP, and carried out an immunohistological investigation. We observed highly immunoreactive neuronal subpopulations in the retinal ganglion, cerebral cortex, hippocampus, basal forebrain, thalamus, areas of midbrain, Purkinje cells of the cerebellum, and motor neurons in the spinal cord. Increased immunoreactivity of glutamatergic neurons was also observed broadly in the CNS after KA treatment. This study provides additional evidence that expression of mRNA and gene products of NAIP seem to be regulated in response to excessive stimuli or injuries in rat CNS, and these results are compatible with an anti-apoptotic role of NAIP in acute SMA as well as in brain injuries.  相似文献   

18.
19.
We have previously demonstrated the presence in human placenta and maternal serum of a GH variant, called human placental growth hormone (hPGH). We have also shown that the hGH-V gene is expressed at the placental level thus possibly coding for hPGH. The hGH-V cDNA has now been isolated from a lambda gt 11 human placenta cDNA library. Its sequence has been determined which firmly establishes the GH-V gene mode of splicing as well as the GH-V protein structure. Our data give final evidence of placental hGH-V gene expression and reinforce the hypothesis of identity between the hGH-V protein and hPGH.  相似文献   

20.
Ran, which functions in nucleocytoplasmic transport and mitosis, binds to and is regulated in part by Ran binding protein (RanBP). A RanBP cDNA (TaRanBP1) was isolated from a wheat cDNA library using RT-PCR product as a probe. The predicted amino acid sequence of TaRanBP1 is over 60% identity to AtRanBP1 from Arabidopsis and also with considerable similarity to human and fungi RanBPs. TaRanBP1 gene was expressed ubiquitously in roots, leaves and stems, with a similar abundance in these tissues. Phylogenetic reconstruction of TaRanBP1 with 32 other RanBPs from 26 species of organisms revealed that RanBPs from plants, animals and fungi clustered as the distinct groups, intraspecies isoforms were not developed for RanBPs, contrast with most other ancestral genes. Structural analysis revealed that all RanBPs were highly conserved in the middle region of their amino acid sequence, which included Ran binding domain and the three conserved motifs that have the essential roles in binding with Ran protein and promotion of GTP hydrolysis by the Ran/RanGAP/RanBP complex. However, N-terminus and C-terminus exhibited very low similarity between the different RanBPs. The different structures in N-terminus and C-terminus of RanBPs are likely to direct the Ran into the specific physiological processes and subsequently exhibit the different roles in different organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号