首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The effect of IAA and FC on the extension of isolated epidermisof light-grown Alaska pea epicotyls was studied under differentconditions with an extension apparatus. The following resultswere obtained.
  2. The epidermis extended in response to low pHbuffer solutionof 1–10 mM, maximum extension being achievedat pH below5.5.
  3. IAA, 5 mg/liter, caused, although not consistently,an extensionof epidermal strips in 1 mM buffer, but not at10 mM.
  4. Consistent extension of the isolated epidermis dueto IAA wasobtained by addition of GTP, ATP, ITP or UTP (sodiumsalts),but not nucleosides, nitrogen bases or sugars.
  5. A fungaltoxin, FC, at 10–5 M induced extension of theepidermiswithout addition of the nucleoside triphosphates.
  6. IAA andFC caused H+ extrusion in peeled epicotyl segments bothin thepresence and absence of GTP. IAA caused appreciable H+extrusionin the isolated epidermis only in the presence ofGTP, whereasH+ extrusion by the epidermis was induced by FCeven in theabsence of GTP.
From these results, we concluded that IAA induces extensionof the isolated epidermis under the above conditions throughthe mediation of H+ ions. (Received July 12, 1976; )  相似文献   

2.
Summary A procedure is introduced which allows the isolation of abundant amounts of F-actin from plants (etiolated pea seedlings) in an array of morphologies very similar to the array of morphologies found in situ. The major feature is a homogenizing medium containing very low ionic strength, low monovalent ion (K+) concentration, a 3-fold higher level of Mg+ +, the presence of EGTA to chelate Ca++, and PMSF to inhibit protease activity. Using this buffer, about 80–90% of the sedimentable actin is found in the low speed (4,000×g) pellet.Abbreviations CSB cytoskeleton-isolation buffer - DTE dithioery-thritol - EGTA ethylene-glycol-bis(B-aminoethyl ether) N,N,NN-tetraacetic acid - EPPS N-[2-hydroxyethyl]-piperazine-N-[3-propane-sulfonic acid] - HEPES N-[hydroxyethyl]-piperazine-N-[2-ethanesulfonic acid] - MFSB microfilament-stabilizing buffer - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - PMSF phenylmethyl-sulfonyl fluoride - PTE polyoxyethylene-10-tridecyl ether - TRIS tris-(hydroxymethyl) aminoethane  相似文献   

3.
Light-enhanced perception of gravity in stems of intact pea seedlings   总被引:1,自引:0,他引:1  
Dark-grown, 6-d-old pea seedlings (Pisum sativum L. cv. Alaska) do not respond gravitropically to brief (approx. 3 min) horizontal presentations, but seedlings given a pulse of red light (R) 16–24 h earlier respond to such stimuli by vigorous curvature of the epicotyl. With continuous horizontal stimulation (approx. 100 min), the kinetics and extent of the gravitropic response are almost identical in irradiated and dark-control plants. Prior R thus increases graviperception without altering the rate-limiting steps underlying the generation of curvature. This effect of R on graviperception develops slowly; seedlings studied only a few hours after R show differences in the kinetics of the gravitropic response, but not in presentation time. Neither the kinetics nor the extent of gravitropic curvature should be used as criteria for establishing changes in primary processes in gravitropism.  相似文献   

4.
Glycosylated seryl residues in wall protein of elongating pea stems   总被引:7,自引:6,他引:1       下载免费PDF全文
Klis FM 《Plant physiology》1976,57(2):224-226
The protein content of salt-washed cell walls isolated from etiolated stems of Pisum sativum L. approximately doubled during elongation. In the same period the concentration in the wall of hydroxyproline, hydrazine-labile (= presumably glycosylated) serine, valine, tyrosine, lysine, and histidine increased markedly in comparison with other amino acids. After elongation was completed both the amino acid composition and the protein content of the cell wall changed only slightly. The ratio for the wall of hydrazine-labile seryl residues to hydroxyprolyl residues remained constant during and after elongation and was found to be 0.20. A linear relationship was established between the rate of elongation and the concentration in the wall of the hydroxyproline-rich glycoprotein both in vivo and in cut sections incubated in buffer.  相似文献   

5.
Treatment of etiolated pea (Pisum sativum L.) internode tissue with ethylene gas inhibits elongation and induces lateral expansion. Precise kinetics of the induction of this altered mode of growth of excised internode segments were recorded using a double laser optical monitoring device. Inhibition of elongation and promotion of lateral expansion began after about 1 hour of treatment and achieved a maximum by 3 hours. Similar induction kinetics were observed after treating internodes with colchicine and 2,6-dichlorobenzonitrile, an inhibitor of cellulose synthesis. In sealed flask experiments, ethylene had no detectable effect on incorporation of label from [14C]glucose into any of the classical pectin, hemicellulose, or cellulose wall fractions. Ethylene inhibited fresh weight increase (total cell expansion) of both excised internode segments (in sealed flasks) and intact seedlings. Ethylene treatment resulted in an increase in cell sap osmolality in those tissues (intact and excised) which are inhibited by the gas. A model for ethylene-induced inhibition of elongation and induction of lateral expansion is presented.  相似文献   

6.
CTP:cholinephosphate cytidylyltransferase (EC 2.7.7.15) was purified from pea (Pisum sativum) stems. The purification involved ammonium sulphate fractionation, ion exchange chromatography, removal of proteases with α2-macroglobulin and gel filtration. The purified enzyme had Km values for phosphorylcholine and CTP of 2.1 mM and 0.55 mM respectively. It was found to have a pH optimum of 7.5, a requirement for Mg2+ and an Mr of 56000. It could not utilize phosphorylethanolamine and its activity was not stimulated by added phospholipids.  相似文献   

7.
8.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

9.
Indole-3-acetic acid (IAA) was found to stimulate stem elongation but inhibit the incorporation of [14C]choline into phosphatidylcholine within 1 h  相似文献   

10.
Summary Microsomal fractions from wheat coleoptiles and pea stems contain a microsomal ATPase activity that requires divalent cations (Ca2+ is more effective than Mg2+) and shows further stimulation by KCl. The effects of added indoleacetic acid were inconclusive. Cytochemical studies on both species showed most pronounced staining for ATPase in the plasmalemma at pH 7.0. However, at pH 5.5, the coleoptile cells showed heaviest staining for ATPase in the endoplasmic reticulum and dictyosomes. The results are discussed with regard to the postulated role of ATPase activity in relation to proton pumping and plant cell elongation.  相似文献   

11.
Incubation of plant tissues at a constant elevated temperature greatly inhibits both basal and wound ethylene production. However, recovery from heat treatment is relatively rapid and is followed by stimulated ethylene production. The present investigation examines the kinetics of ethylene production after short-term heal treatment and the regulation of heat-altered ethylene production. Subapical stem segments of 7-day-old etiolated pea L. cv. Alaska) seedlings were analyzed for ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) oxidation, and ACC and l-(malonylamino)cyclopropane-l-carboxylic acid (MACC) content after a 2-min 40°C heat pulse. The short-term heat pulse transiently inhibited ethylene production and ACC oxidation accompanied by a slight ACC accumulation within a 30-min time period. Conjugation to MACC did not appear to play an integral role in heat-regulated ethylene production. It was concluded that the major factor affecting ethylene production after heat treatment is the temporary inactivation of ACC oxidation. The possible roles of ACC synthase, ACC oxidase and lipoxygenase in regulating ethylene production after heat treatment are discussed.  相似文献   

12.
Kang BG  Burg SP 《Plant physiology》1974,53(3):445-448
In the subapical third internode of 7-day-old etiolated pea seedlings, the magnitude of phototropic curvature in response to continuous unilateral blue illumination is increased when seedlings are pre-exposed to brief red light. The effect of red light on blue light-induced phototropism becomes manifest maximally 4 or more hours after red illumination, and closely parallels the promotive action of red light on the elongation of the subapical cells. Ethylene inhibits phototropic curvature by an inhibitory action on cell elongation without affecting the lateral transport of auxin. Pretreatment of seedlings with gibberellic acid causes increased phototropic curvature, but experiments using 14C-gibberellic acid indicate that gibberellic acid itself is not laterally transported under phototropic stimuli. Neither red light nor gibberellic acid treatment has any promotive effect on blue light-induced lateral transport of 3H-indoleacetic acid. Under conditions where phototropic curvature is increased by red light treatment, low concentrations of indoleacetic acid applied in lanolin paste to the apical cut end of the seedling cause an increased elongation response in subapical tissue. This could explain increased phototropic curvature caused by red light treatment.  相似文献   

13.
Internodes were isolated from okra and pea plants grown from seed under controlled conditions. Isolated internodes were treated apically or basally with IAA-C14 or 2,4-D-C14 and several vascular bundles were severed in the middle of the internodes. Transport of auxins was basipetally polar, IAA moving with greater facility than 2,4-D. Apically applied auxin stimulated vascular regeneration in the wound area; basally applied auxin did not, but radioactivity from basally applied IAA reached the wound. This suggests that the path of transport or mode of presentation to cells is important unless basally and apically applied auxin are metabolized differently.  相似文献   

14.
To understand the regulatory mechanisms involved in tissue development by light, the kinetics of regulation of Casparian strip (CS) development in garden pea stems was studied. We found that short-term irradiation with white light delayed the development of the CS and used this delay to assess the quantitative effect of light on CS development. We examined the effect of the duration and fluence rates of white light treatment on CS development and observed a significant relationship between fluence and the delay in CS development indicating that the Bunsen–Roscoe law of reciprocity holds for this response. The effect of white light irradiation was not inhibited in the presence of a photosynthetic inhibitor, DCMU, or a carotenoid biosynthesis inhibitor, Norflurazon, indicating that the delay in CS development by light is a photomorphogenetic response rather than a subsidiary effect mediated by photosynthetic activity. An action spectrum for the response displayed a major peak in the blue-light region, suggesting a dominant role for blue-light receptors. A minor peak in the red-light region also suggested the possible involvement of phytochromes. Although phytochromes are known to contribute to blue-light responses, phytochrome-deficient mutants showed a normal delay of CS development in response to blue light, indicating that the response is not mediated by phytochrome and suggesting a role for one or more specific blue-light receptors.  相似文献   

15.
A gene (EGL2) encoding an endo-1,4-beta-glucanase in peas has been cloned as a homologue of EGL1. EGL2 encodes a polypeptide of 506 amino acids, including a 24-mer putative signal polypeptide. The gene product contains a domain conserved in endo-1,4-beta-glucanase (family 9) showing 60% amino acid identity to EGL1. EGL2 mRNA was accumulated only in the elongating regions of pea stems, although EGL1 mRNA was abundant in both elongating and non-elongating tissues. However, the level of EGL2 mRNA was not increased by the treatment with sucrose and auxin in pea segments. These results suggest that the expression of EGL2 either requires the presence of other factors related to the auxin effect or occurs independent of auxin in the elongating pea stems.  相似文献   

16.
Ethylene-induced inhibition of elongation and promotion of lateral expansion in the stems of etiolated pea (Pisum sativum L. var Alaska) seedlings is not associated with any alteration of auxin-stimulated proton extrusion. Indeed, lateral expansion in response to ethylene apparently requires an acidified wall since it is prevented by strong neutral buffers and by the ATPase inhibitor orthovanadate. Ethylene treatment reduces the capacity of live and frozen-thawed sections to extend in the longitudinal direction in response to acid. The effect of ethylene on lateral acid growth capacity is more complicated. Ethylene-treated internodes do not exhibit acid-induced lateral expansion. Ethylene-treated segments which have been frozen-thawed do show an enhanced capacity to extend in the transverse direction at acid pH, but only when the inner tissues have been removed by coring. We conclude that two of the factors which control the directionality of expansion during ethylene treatment are a decrease in the sensitivity of the walls to acid longitudinally and an increase in the sensitivity of the outer cortical parenchyma walls to acid in the transverse direction.  相似文献   

17.
Glucosamine and mannose were incorporated into oligosaccharides linked to either polar membrane-lipids or to asparagine residues of endogenous proteins in apical growing tissues of the etiolated pea stem. The glycolipids were subject to turnover in pulse-chase tests and protein-linked oligosaccharides accumulated with time, as expected for a precursor-product relationship. The newly formed glycoproteins were hydrolyzed by endo-β-N-acetylglucosaminidase H to oligosaccharides in the same size range as those released by dilute acid from the lipid-linked oligosaccharides formed during the pulse. The glycoproteins were also partly degraded to free N-acetylglucosamine by β-N-acetylhexosaminidase. Affinity of the carbohydrate moiety of the protein for concanavalin A increased between the beginning and the end of the chase, indicating processing following core glycosylation.

The addition of UDP-N-acetyl-[14C]glucosamine plus external peptide acceptors (derived from carboxymethylated α-lactalbumin) to membrane preparations from the pea stem resulted in peptide glycosylation at the expense of lipid-linked oligosaccharide. Glycosylation of endogenous protein acceptors did not take place via lipid intermediates but directly from the sugar nucleotide substrate. Tunicamycin inhibited glycosyltransfer to both glycolipids and added peptides, but not to endogenous protein. It is concluded that limiting factors for N-glycosylation by pea membranes in vitro could include the unavailability of endogenous acceptors or the inability to fully elongate and internalize lipid precursors, but is not due to any limitation in capacity for N-glycosylation.

  相似文献   

18.
Starch synthesis in developing pea embryos   总被引:4,自引:1,他引:3  
  相似文献   

19.
A series of chlorinated indolylacetic acids was assessed for auxin activity on pea stem sections. It is suggested that the activities shown are reasonably consistent with a receptor site theory of structure-activity previously proposed[1].  相似文献   

20.
The gross composition of the outer epidermal cell wall from third internodes of Pisum sativum L. cv. Alaska grown in dim red light, and the effect of auxin on that composition, was investigated using interference microscopy. Pea outer epidermal walls contain as much cellulose as typical secondary walls, but the proportion of pectin to hemicellulose resembles that found in primary walls. The pectin and hemicellulose fractions from epidermal peels, which are enriched for outer epidermal wall but contain internal tissue as well, are composed of a much higher percentage of glucose and glucose-related sugars than has been found previously for pea primary walls, similar to non-cellulosic carbohydrate fractions of secondary walls. The epidermal outer wall thus has a composition rather like that of secondary walls, while still being capable of elongation. Auxin induces a massive breakdown of hemicellulose in the outer epidermal wall; nearly half the hemicellulose present is lost during 4 h of growth in the absence of exogenous sugar. The percentage breakdown is much greater than has been seen previously for whole pea stems. It has been proposed that a breakdown of xyloglucan could be the basis for the mechanical loosening of the outer wall. This study provides the first evidence that such a breakdown could be occurring in the outer wall.M.S. Bret-Harte would like to thank Dr. Peter M. Ray, of Stanford University, for helpful discussions and for technical and editorial assistance, Dr. Winslow R. Briggs, of the Camegie Institude of Washington, for the use of experimental facilities and for helpful discussions, Dr. Wendy K. Silk, of the University of California, Davis, for helpful discussions and financial support, Dr. Paul B. Green for financial support, and Drs. John M. Labavitch and L.C. Greve, of the University of California, Davis, for performing the -cellulose analysis on short notice, in response to a request by an anonymous reviewer. This work was supported by a National Science Foundation Graduate Fellowship to M.S. B.-H., National Science Foundation Grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk (Department of Land, Air, and Water Resources, University of California, Davis) during the final writing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号