首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heme iron in human adult hemoglobin modified by both pyridoxal-5'-phosphate and glutaraldehyde was characterized by M?ssbauer spectroscopy and compared with non-modified hemoglobin. M?ssbauer spectra of the samples were measured at 87 and 295 K (1yophilized form) and at 87 K (frozen solution). The values of quadrupole splitting for the oxy-form of modified hemoglobin were found to be lower than those of the oxy-form of hemoglobin without modifications in lyophilized form and frozen solution, respectively. On the other hand, the values of quadrupole splitting for the deoxy-form of modified and non-modified hemoglobins in frozen solution were the same. The M?ssbauer spectra of the oxy-form of modified hemoglobin were also analyzed in terms of the heme iron non-equivalence in alpha- and beta-subunits of tetramer. The differences of the tendencies of temperature dependencies of quadrupole splitting for the oxy-form of modified and non-modified hemoglobins in lyophilized form were shown. These results indicated that the heme iron electronic structure and stereochemistry were changed in the oxy-form of pyridoxylated hemoglobin cross-linked by glutaraldehyde.  相似文献   

2.
3.
Comparative study of human liver ferritin and spleen tissues from healthy human and patient with primary myelofibrosis was carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K and with a low velocity resolution at 20 K. The results obtained demonstrated that the iron content in patient’s spleen in the form of iron storage proteins was about ten times larger than that in normal tissue. However, in the case of patient with primary myelofibrosis the magnetic anisotropy energy barrier differed from that in normal case and, probably, the iron core size was supposed to be slightly larger than that in both normal spleen tissue and normal human liver ferritin in contrast to well-known data for iron overload in patients with thalassemia accompanied by the iron-core size increase. Therefore, the iron overload in the case of patient with primary myelofibrosis may be related to increase in the ferritin content mainly. It was also found that Mössbauer hyperfine parameters for normal and patient’s spleen and normal human liver ferritin demonstrated some small differences related, probably, to some small structural variations in the ferritin iron cores of patient’s spleen.  相似文献   

4.
The Mössbauer spectra of horse heart ferri- and ferrocytochrome c were obtained at room temperature using lyophilized powders. The Mössbauer data indicate that the iron in both lyophilized samples is in a low-spin state. The high quadrupole splittings suggest that the iron atom is in an asymmetric ligand field. Upon reduction the asymmetry increases, suggesting a change in the bonding between the protein moieties and the iron atom.  相似文献   

5.
Ferritin cores from human spleen, limpet (Patella vulgata) haemolymph and bacterial (Pseudomonas aeruginosa) cells have been investigated using 57Fe M?ssbauer spectroscopy. The M?ssbauer spectra were recorded over a range of temperatures from 1.3 to 78 K, all the spectra are quadrupole-split doublets with similar quadrupole splittings and isomer shifts, characteristic of iron(III), while at sufficiently low temperatures the spectra of all the samples show well-resolved magnetic splitting. At intermediate temperatures, the spectra from the human ferritin exhibit typical superparamagnetic behaviour, while those from the bacterial ferritin show behaviour corresponding to a transition from a magnetically ordered to a paramagnetic state. The spectra from the limpet ferritin show a complex combination of the two effects. The results are discussed in terms of the magnetic behaviour of small particles. The data are consistent with magnetic ordering temperatures of about 3 and 30 K for the bacterial and limpet ferritin cores, respectively, while the data indicate that the magnetic ordering temperature for the human ferritin cores must be above 50 K. These differences are interpreted as being related to different densities of iron in the cores and to variations in the composition of the cores. The human ferritin cores are observed to have a mean superparamagnetic blocking temperature of about 40 K, while that of the limpet ferritin cores is about 25 K. This difference is interpreted as being due not only to different mean numbers of iron atoms in the two types of core but also to the higher degree of crystallinity in the cores of the human ferritin.  相似文献   

6.
Variations in the turnover of storage iron have been attributed to differences in apoferritin and in the cytoplasm but rarely to differences in the structure of the iron core (except size). To explore the idea that the iron environment in soluble iron complexes could vary, we compared horse spleen ferritin to pharmaceutically important model complexes of hydrous ferric oxide formed from FeCl3 and dextran (Imferon) or chondroitin sulfate (Blutal), using x-ray absorption (EXAFS) and M?ssbauer spectroscopy. The results show that the iron in the chondroitin sulfate complex was more ordered than in either horse spleen ferritin or the dextran complex (EXAFS), with two magnetic environments (M?ssbauer), one (80%-85%) like Fe2O3 X nH2O (ferritinlike) and one (15%-20%) like Fe2O3 (hematite); since sulfate promotes the formation of inorganic hematite, the sulfate in the chondroitin sulfate most likely nucleated Fe2O3 and hydroxyl/carboxyls, which are ligands common to chondroitin sulfate, ferritin and dextran most likely nucleated Fe2O3 X nH2O. Differences in the structure of the iron complexed with chondroitin sulfate or dextran coincide with altered rates of iron release in vivo and in vitro and provide the first example relating function to local iron structure. Differences might also occur among ferritins in vivo, depending on the apoferritin (variations in anion-binding sites) or the cytoplasm (anion concentration).  相似文献   

7.
Ferritin stores iron within a hollow protein shell as a polynuclear Fe(III) hydrous oxide core. Although iron uptake into ferritin has been studied previously, the early stages in the creation of the core need to be clarified. These are dealt with in this paper by using M?ssbauer spectroscopy, a technique that enables several types of Fe(II) and Fe(III) to be distinguished. Systematic M?ssbauer studies were performed on samples prepared by adding 57Fe(II) atoms to apoferritin as a function of pH (5.6-7.0), n [the number of Fe/molecule (4-480)], and tf (the time the samples were held at room temperature before freezing). The measurements made at 4.1 and 90 K showed that for samples with n less than or equal to 40 at pH greater than or equal to 6.25 all iron was trivalent at tf = 3 min. Four different Fe(III) species were identified: solitary Fe(III) atoms giving relaxation spectra, which can be identified with the species observed before by EPR and UV difference spectroscopy; oxo-bridged dimers giving doublet spectra with large splitting, observed for the first time in ferritin; small Fe(III) clusters giving doublets of smaller splitting and larger antiferromagnetically coupled Fe(III) clusters, similar to those found previously in larger ferritin iron cores, which, for samples with n greater than or equal to 40, gave magnetically split spectra at 4.1 K. Both solitary Fe(III) and dimers diminished with time, suggesting that they are intermediates in the formation of the iron core. Two kinds of divalent iron were distinguished for n = 480, which may correspond to bound and free Fe(II).  相似文献   

8.
The possible role of iron in the degeneration of nervous cells in Parkinson's disease (PD) was studied with the use of M?ssbauer spectroscopy (MS) and enzyme-linked immunoabsorbent assay (ELISA). M?ssbauer data were obtained at 90 and 4.1 K from 21 samples of control and 9 samples of parkinsonian substantia nigra (SN). M?ssbauer spectra were very similar to those observed in ferritin. Small differences were detected between the spectra obtained from PD and from control SN, and could be due to a slight difference in the composition of the ferritin-like iron cores or due to the presence of about 8% of non-ferritin-like iron in parkinsonian SN. ELISA studies from 11 controls and 6 parkinsonian SN showed a decrease in the concentration of L-chains in wet tissues of PD-SN compared to control SN. The decrease in the amount of L subunits may correspond to a decreased ability of this ferritin to keep iron in a safe form. Iron released from ferritin or neuromelanin (NM) may be the source of such iron, which may cause the difference in the M?ssbauer spectra and may trigger oxidative stress leading to cell death.  相似文献   

9.
1. The Mössbauer spectra of Scenedesmus ferredoxin enriched in 57Fe were measured and found to be identical with those of two other plant-type ferredoxins (from spinach and Euglena) that had been previously measured. Better resolved Mössbauer spectra of spinach ferredoxin are also reported from protein enriched in 57Fe. All these iron–sulphur proteins are known to contain two iron atoms in a molecule that takes up one electron on reduction. 2. The Mössbauer spectra at 195°K have electric hyperfine structure only and show that on reduction the electron goes to one of the iron atoms, the other appearing to remain unchanged. 3. In the oxidized state, both iron atoms are in a similar chemical state, which appears from the chemical shift and quadrupole splitting to be high-spin Fe3+, but they are in slightly different environments. In the reduced state the iron atoms are different and the molecule appears to contain one high-spin Fe2+ and one high-spin Fe3+ atom. 4. At lower temperatures (77 and 4.2°K) the spectra of both iron atoms in the reduced proteins show magnetic hyperfine structure which suggests that the iron in the oxidized state also has unpaired electrons. This provides experimental evidence for earlier suggestions that in the oxidized state there is antiferromagnetic exchange coupling, which would result in a low value for the magnetic susceptibility. 5. In a small magnetic field the spectrum of the reduced ferredoxin shows a Zeeman splitting with hyperfine field (Hn) of 180kG at the nuclei. On application of a strong magnetic field H the spectrum splits into two spectra with effective fields Hn±H, thus confirming the presence of the two antiferromagnetically coupled iron atoms. 6. These results are in agreement with the model proposed by Gibson, Hall, Thornley & Whatley (1966); in the oxidized state there are two Fe3+ atoms (high spin) antiferromagnetically coupled and on reduction of the ferredoxin by one electron one of the ferric atoms becomes Fe2+ (high spin).  相似文献   

10.
Mössbauer spectra were measured for PSII particles having an active water-splitting system. The particles were isolated from the thennophilic cyanobacterium Synechococcus elongatus enriched in57Fe. The Mössbauer resonance absorption spectrum is a superposition of 3 doublets with the following quadrupole splitting and chemical shift: 1, δ = 0.40, Δ = 0.85; II, δ = 1.35,Δ =2.35; III, δ = 0.25, Δ = 1.65. The δ and Δ values of doublets I, II, III are characteristic of proteins with iron-sulphur center, non-heme iron of the reaction center of higher plants and of the oxidized cytochrome 6–559. Treatment with sodium formate to remove bicarbonate affects only the doublet of non-heme iron, causing its quadrupole splitting to reduce to 1.75 and the chemical shift to reduce to 0.90. After washing out the formate, the Mossbauer spectrum of non-heme iron is restored. The data suggest that bicarbonate is a ligand for the non-heme iron of the reaction center of cyanobacteria.  相似文献   

11.
Absorption 57Fe M?ssbauer spectra have been carried out directly on fresh or lyophylized tissues of liver with either normal iron depot or iron overload. Two types of overloading have been studied: primary iron overload due to an excessive intestinal iron absorption and secondary iron overload (hemosiderosis) produced in beta-thalassemia patients by hypertransfusional therapeutics. The M?ssbauer spectra, at room temperature, 77 and 4.2 K, on normal liver samples, are typical for the ferritin-hemosiderin compounds. In the spectra, performed on hemosiderosis liver samples, there appears, in addition to ferritin and hemosiderin, a new iron molecular environment, typical of high spin ferric iron and characterized by a superparamagnetic behaviour which begins at high temperature (above 77 K). This new component does not show up in the primary iron overload cases and seems characteristic of the physiological process which induces the iron overload.  相似文献   

12.
1. Rubredoxin isolated from the green photosynthetic bacterium Chloropseudomonas ethylica was similar in composition to those from anaerobic fermentative bacteria. Amino acid analysis indicated a minimum molecular weight of 6352 with one iron atom per molecule. 2. The circular-dichroism and electron-paramagnetic-resonance spectra of Ch. ethylica rubredoxin showed many similarities to those of Clostridium pasteurianum, but suggested that there may be subtle differences in the protein conformation about the iron atom. 3. Mössbauer-effect measurements on rubredoxin from Cl. pasteurianum and Ch. ethylica showed that in the oxidized state the iron (high-spin Fe3+) has a hyperfine field of 370±3kG, whereas in the reduced state (high-spin Fe2+) the hyperfine field tensor is anisotropic with a component perpendicular to the symmetry axis of the ion of about −200kG. For the reduced protein the sign of the electric-field gradient is negative, i.e. the ground state of the Fe2+ is a [unk] orbital. There is a large non-cubic ligand-field splitting (Δ/k=900°K), and a small spin-orbit splitting (D~+4.4cm−1) of the Fe2+ levels. 4. The contributions of core polarization to the hyperfine field in the Fe3+ and Fe2+ ions are estimated to be −370 and −300kG respectively. 5. The significance of these results in interpretation of the Mössbauer spectra of other iron–sulphur proteins is discussed.  相似文献   

13.
A comparative study of oxyhemoglobins from pig, rabbit, normal human and patients with blood system malignant diseases was performed using Mössbauer spectroscopy with a high velocity resolution at 90 K. Mössbauer spectra were fitted with the help of two models: using one quadrupole doublet (model of equivalent iron electronic structure in α- and β-subunits of hemoglobins) and superposition of two quadrupole doublets (model of non-equivalent iron electronic structure in α- and β-subunits of hemoglobins). The results obtained using both models demonstrated small variations of hyperfine parameters that were related to the heme iron state variation in different hemoglobins. These results were compared with structural and functional differences of the hemoglobins investigated.  相似文献   

14.
1. The previous Mössbauer work on Chromatium high-potential iron–sulphur protein by Moss et al. (1968) and Evans et al. (1970) was extended to high applied magnetic fields. 2. Measurements of the reduced protein confirm that it is non-magnetic. 3. Spectra of the oxidized protein in applied magnetic fields clearly indicate that some iron atoms have a positive hyperfine field, which is evidence for antiferromagnetic coupling. 4. The spectra can be interpreted in terms of two types of iron atom with positive and negative hyperfine fields of 9 and 12T respectively. 5. A consideration of the chemical shifts and other evidence suggests formal valences of two Fe3+ and two Fe2+ atoms in the non-magnetic reduced state, and three Fe3+ atoms and one Fe2+ atom in the oxidized state. 6. However, no separate Fe3+ and Fe2+ spectra are seen, suggesting that the d electrons are not localized on particular iron atoms.  相似文献   

15.
1. Mössbauer spectra were measured of adrenodoxin purified from porcine adrenal glands. They show similarities to the spectra of the plant ferredoxins. All of these proteins contain two atoms of iron and two of inorganic sulphide per molecule, and on reduction accept one electron. 2. As with the plant ferredoxins the adrenodoxin for these measurements was enriched with 57Fe by reconstitution of the apo-protein, and subsequently was carefully purified and checked by a number of methods to ensure that it was in the same conformation as the native protein and contained no extraneous iron. 3. The Mössbauer spectra of oxidized adrenodoxin at temperatures from 4.2°K to 197°K show that the iron atoms are probably high-spin Fe3+, and in similar environments, and experience little or no magnetic field from the electrons. 4. Mössbauer spectra of reduced adrenodoxin showed magnetic hyperfine structure at all temperatures from 1.7°K to 244°K, in contrast with the reduced plant ferredoxins, which showed it only at lower temperatures. This is a consequence of a longer electron-spin relaxation time in reduced adrenodoxin. 5. At 4.2°K in a small magnetic field the spectrum of reduced adrenodoxin shows a sixline Zeeman pattern due to Fe3+ superimposed upon a combined magnetic and quadrupole spectrum due to Fe2+. 6. In a large magnetic field (30kG) each hyperfine pattern is further split into two. Analysis of these spectra at 4.2°K and 1.7°K shows that the effective fields at the Fe3+ and Fe2+ nuclei are in opposite directions. This agrees with the proposal, first made for the ferredoxins, that the iron atoms are antiferromagnetically coupled. 7. In accord with the model for the ferredoxins, it is proposed that the oxidized adrenodoxin contains two high-spin Fe3+ atoms which are antiferromagnetically coupled; on reduction one iron atom becomes high-spin Fe2+.  相似文献   

16.
The iron-storage molecule ferritin can sequester up to 4500 Fe atoms as the mineral ferrihydrite. The iron-core is gradually built up when FeII is added to apoferritin and allowed to oxidize. Here we present evidence, from M?ssbauer spectroscopic measurements, for the surprising result that iron atoms that are not incorporated into mature ferrihydrite particles, can be transferred between molecules. Experiments were done with both horse spleen ferritin and recombinant human ferritin. M?ssbauer spectroscopy responds only to 57Fe and not to 56Fe and can distinguish chemically different species of iron. In our experiments a small number of 57FeII atoms were added to two equivalent apoferritin solutions and allowed to oxidize (1-5 min or 6 h). Either ferritin containing a small iron-core composed of 56Fe, or an equal volume of NaCl solution, was added and the mixture frozen in liquid nitrogen to stop the reaction at a chosen time. Spectra of the ferritin solution to which only NaCl was added showed a mixture of species including 57FeIII in solitary and dinuclear sites. In the samples to which 150 56FeIII-ferritin had been added the spectra showed that all, or almost all, of the 57FeIII was in large clusters. In these solutions 57FeIII initially present as intermediate species must have migrated to molecules containing large clusters. Such migration must now be taken into account in any model of ferritin iron-core formation.  相似文献   

17.
The magnetic hyperfine structure observed in the 57Fe Mössbauer spectra of the high-potential iron protein from Chromatium shows that the iron atoms are inequivalent in pairs, with hyperfine fields of 121 and 90kG.  相似文献   

18.
A gelatinized cross-linked high amylose starch matrix with magnetic properties was synthesized via in situ formation of iron oxides inside the polymer matrix. Precipitation and multiple oxidation of ferrous ions were performed. The samples were observed using transmission and scanning electron microscopy, showing morphological changes in the magnetic and polymer phases. The iron content analysis revealed a decay from one oxidation cycle to the next one if no fresh ferrous solutions are added before the multiple oxidation. X-ray diffractograms, magnetization curves and Mössbauer spectra were also recorded for the characterization of the magnetic phase. The products exhibit superparamagnetic properties due to the presence of ferrimagnetic nanoparticles, although some other iron compounds are also present.  相似文献   

19.
Mössbauer spectra have been obtained from samples of human placental syncytiotrophoblast microvillous plasma membranes, placental ferritin and transferrin. The data clearly indicate that the majority of the iron found in the placental membranes is in the same form as that in placental ferritin.  相似文献   

20.
Ferritin, a natural complex of iron oxide encased in protein, and iron . dextran, a synthetic complex of iron oxide coated with dextran, have the similar properties of maintaining high concentrations of iron in solution at physiological pH and releasing iron relatively slowly in vivo. Extended x-ray absorption fine structure (EX-AFS) analysis was performed on each complex and compared to see if the structures of the iron cores were similar. The results obtained from the extended x-ray absorption fine structure technique show that the near-neighbor environment around the average iron atom in ferritin and iron . dextran is identical, within experimental uncertainty, for the first three shells. The similarity of the iron cores in both complexes may explain the similarity of iron release in vivo. Ferritin has a protein coat which is composed of 24 subunits arranged in a hollow sphere with six channels through which the iron may move during deposition and release. However, little is known about the requirements of the protein structure in ferritin for the maintenance of high concentrations of iron in a soluble, nontoxic form or about the role of the protein in the release of iron from ferritin. The results suggest that iron . dextran will be a useful model compound in studies of the relation of the iron core and protein in ferritin to function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号