首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Activity-induced adaptations in skeletal muscles of iron-deficient rabbits   总被引:1,自引:0,他引:1  
The purpose of this study was to determine whether severe iron deficiency alters the adaptive response of skeletal muscle fibers to a sustained increase in tonic contractile activity. Seven weanling rabbits consumed a low iron diet and underwent phlebotomy twice weekly for 6 mo, resulting in severe anemia (mean Hb 5.5 g/dl). Compared with control animals, tibialis anterior skeletal muscles of iron-deficient animals exhibited reduced concentrations of cytochrome c (4.4 +/- 0.7 vs. 8.6 +/- 0.7 nmol/g tissue; P less than 0.01), and reduced activities of citrate synthase (83 +/- 10 vs. 133 +/- 13 mU/mg protein; P less than 0.01) and cytochrome-c oxidase (2.2 +/- 0.2 vs. 3.6 +/- 0.5 U/mg protein; P less than 0.05). In these muscles mitochondria were swollen and displayed deformed cristae. Less severe biochemical abnormalities were observed in cardiac and soleus skeletal muscles. Ten days of continuous electrical stimulation of the motor nerve supplying anterior compartment muscles of iron-deficient rabbits increased expression of mitochondrial proteins: cytochrome c was increased to 154% of control levels (P less than 0.05), and cytochrome-c oxidase and citrate synthase activities were increased to 199 and 272% of control levels, respectively (P less than 0.005). In addition, electrical pacing increased the fractional volume of mitochondria observed by electron microscopy and reduced the activity of aldolase A by 28% (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The activities of the mitochondrial enzymes citrate synthase (citrate oxaloacetatelyase, EC 4.1.3.7), NADP-linked isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42), and succinate dehydrogenase (succinate: FAD oxidoreductase, EC 1.3.99.1) as well as their kinetic behavior in the two developmental forms of Trypanosoma cruzi at insect vector stage, epimastigotes and infective metacyclic trypomastigotes, were studied. The results presented in this work clearly demonstrate a higher mitochondrial metabolism in the metacyclic forms as is shown by the extraordinary enhanced activities of metacyclic citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. In epimastigotes, the specific activities of citrate synthase at variable concentrations of oxalacetate and acetyl-CoA were 24.6 and 26.6 mU/mg of protein, respectively, and the Michaelis constants were 7.88 and 6.84 microM for both substrates. The metacyclic enzyme exhibited the following kinetic parameters: a specific activity of 228.4 mU/mg and Km of 3.18 microM for oxalacetate and 248.5 mU/mg and 2.75 microM, respectively, for acetyl-CoA. NADP-linked isocitrate dehydrogenase specific activities for epimastigotes and metacyclics were 110.2 and 210.3 mU/mg, whereas the apparent Km's were 47.9 and 12.5 microM, respectively. No activity for the NAD-dependent isozyme was found in any form of T. cruzi differentiation. The particulated succinate dehydrogenase showed specific activities of 8.2 and 39.1 mU/mg for epimastigotes and metacyclic trypomastigotes, respectively, although no significant changes in the Km (0.46 and 0.48 mM) were found. The cellular role and the molecular mechanism that probably take place during this significant shift in the mitochondrial metabolism during the T. cruzi differentiation have been discussed.  相似文献   

3.
BACKGROUND AND AIMS: Acetaminophen (APAP) or paracetamol is a hepatotoxic drug through mechanisms involving oxidative stress. To know whether mammalian cells possess inducible pathways for antioxidant defense, we have to study the relationship between heme metabolism and oxidative stress. METHODS: fasted female Wistar rats received a single injection of APAP (3.3 mmol kg(-1) body weight) and then were killed at different times. Heme oxygenase-1 (HO), delta-aminolevulinic acid (ALA) synthase, ALA dehydratase, and porphobilinogenase activities, lipid peroxidation, GSH, catalase and glutathione peroxidase, were measured in liver homogenates. The antioxidant properties of bilirubin and S-adenosyl-L-methionine were also evaluated. RESULTS: APAP increased lipid peroxidation (115% +/- 6; S.E.M., n=12 over control values) 1 h after treatment. GSH reached a minimum at 3 h (38% +/- 5) increasing thereafter. At the same time antioxidant enzymes reached minimum values (catalase, 5. 6 +/- 0.4 pmol mg(-1) protein, glutathione peroxidase, 0.101 +/- 0.006 U mg(-1) protein). HO induction was observed 6 h after treatment reaching a maximum value of 2.56 +/- 0.12 U mg(-1) protein 15 after injection. ALA synthase (ALA-S) induction occurred after enhancement of HO, reaching a maximum at 18 h (three-fold the control). ALA dehydratase activity was first inhibited (31 +/- 3%) showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of bilirubin (5 micromol kg(-1) body weight) or S-adenosyl L-methionine (46 micromol kg(-1) body weight) 2 h before APAP treatment entirely prevented the increase in malondialdehyde (MDA) content, the decrease in GSH levels as well as HO and ALA-S induction. CONCLUSION: This study shows that oxidative stress produced by APAP leads to increase in ALA-S and HO activities, indicating that toxic doses of APAP affect both heme biosynthesis and degradation.  相似文献   

4.
The effects of aldosterone and arginine vasotocin (AVT) on transepithelial Na+ transport of cultured A6 cells were investigated. All experiments were performed with cells grown on Millicell TM culture-plate inserts for a period of 2-4 weeks in defined, serum-free medium. Omitting fetal bovine serum 2 days after seeding the cells on filters did not influence potential difference (PD) development or the hormonal responses tested. The cell layers were placed in an Ussing chamber for short-circuit current (ISC) and transepithelial conductance (G) measurements. Base-line values were (n = 93): PD, 51.0 +/- 0.2 mV (apical side negative); ISC, 14.55 +/- 0.06 microA/cm2; G, 0.306 +/- 0.001 mS/cm2. ISC and G were higher in cells pretreated with 10(-7) M aldosterone for 24 h in the incubator, when compared to controls (ISC, 28 +/- 2 vs. 16 +/- 2 microA/cm2, G, 0.41 +/- 0.04 vs. 0.26 +/- 0.01 mS/cm2, n = 5) and both remained stable for at least 6 h. In cells not treated with aldosterone, 10(-7) M AVT increased ISC within 1 min after addition, producing a maximum ISC within 15 min which then declined to baseline levels over the next 5 h. Addition of AVT to aldosterone-pretreated cells resulted in a significantly greater peak increase in ISC than in non-pretreated cells (change in ISC compared to controls: 8.1 +/- 0.4 vs. 4.9 +/- 0.4 microA/cm2, n = 5, P less than 0.001), indicating a synergistic effect. A dose-response curve for amiloride obtained in the presence of AVT showed that amiloride completely inhibits ISC. Pretreatment of the A6 cells with aldosterone for 24 h shifted the amiloride dose-response curve to the right, as expressed in a doubling of the apparent Ki value (from 0.17 +/- 0.02 to 0.33 +/- 0.04 microM). In conclusion, A6 cells grown in defined, serum-free medium express a greater than additive synergism between aldosterone and AVT in stimulating transepithelial Na+ transport.  相似文献   

5.
We have examined the activity and distribution of cathepsin D (EC 3.4.23.5), a major renal lysosomal endoproteinase, in the various anatomical and functional areas of normal rat kidney. Cathepsin D-like activities (delta A280/h per mg of protein) in normal rat tissues were: cortex, 0.78 +/- 0.05, n = 37; medulla, 0.62 +/- 0.03, n = 12; papilla, 0.63 +/- 0.04, n = 12; tubules, 0.74 +/- 0.04, n = 28; glomeruli, 0.59 +/- 0.03, n = 28; and liver, 0.41 +/- 0.02, n = 28. Enzyme activity was maximal at pH 3.0-3.5 and inhibited more than 90% by pepstatin (6.7 micrograms/ml), suggesting that the enzyme is cathepsin D. In subsequent experiments we measured cathepsin D-like activity in cortex, tubules and glomeruli isolated from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Treated animals (15 mg of PAN/100g body wt., intraperitoneally) developed proteinuria beginning 4 days after injection and exceeding 900 mg/24h on day 9. In two separate experiments involving 52 animals we observed a significant increase in cathepsin D-like activity in cortex (+82.7%), tubules (+109.6%) and glomeruli (+54.7%) isolated from PAN-treated rats killed during marked proteinuria (day 9, mean total urinary protein excretion: 937 +/- 94 mg/24h). This increase was observed whether the activity was expressed per mg of DNA or per mg of protein. Increased cathepsin D-like activity was first observed in cortex and tubules coincident with the onset of proteinurea (day 4, mean total urinary protein excretion: 112 +/- 23 mg/24h). In contrast with the significant elevation of renal cathepsin D-like activity, the activity (nmol/h per mg of protein) of alpha-L-fucosidase (EC 3.2.1.51), a non-proteolytic enzyme, was markedly decreased in the identical samples used for the measurement of cathepsin D-like activity: cortex (-46.4%); tubules (-46.1%); and glomeruli (-38.5%). In addition to changes in renal enzyme activities, PAN-treated rats excreted large amounts of cathepsin D-like activity in their urine (beginning on day 3) compared with nearly undetectable cathepsin D-like activity in the urine from control rats. The significant increases in glomerular and tubular cathepsin D activity may reflect an important role for this enzyme in the pathophysiology associated with PAN-induced nephrotic syndrome.  相似文献   

6.
There are currently no models of exercise that recruit and train muscles, such as the rat spinotrapezius, that are suitable for transmission intravital microscopic investigation of the microcirculation. Recent experimental evidence supports the concept that running downhill on a motorized treadmill recruits the spinotrapezius muscle of the rat. Based on these results, we tested the hypothesis that 6 wk of downhill running (-14 degrees grade) for 1 h/day, 5 days/wk, at a speed of up to 35 m/min, would 1) increase whole body peak oxygen uptake (Vo(2 peak)), 2) increase spinotrapezius citrate synthase activity, and 3) reduce the fatigability of the spinotrapezius during electrically induced 1-Hz submaximal tetanic contractions. Trained rats (n = 6) elicited a 24% higher Vo(2 peak) (in ml.min(-1).kg(-1): sedentary 58.5 +/- 2.0, trained 72.7 +/- 2.0; P < 0.001) and a 41% greater spinotrapezius citrate synthase activity (in mumol.min(-1).g(-1): sedentary 14.1 +/- 0.7, trained 19.9 +/- 0.9; P < 0.001) compared with sedentary controls (n = 6). In addition, at the end of 15 min of electrical stimulation, trained rats sustained a greater percentage of the initial tension than their sedentary counterparts (control 34.3 +/- 3.1%, trained 59.0 +/- 7.2%; P < 0.05). These results demonstrate that downhill running is successful in promoting training adaptations in the spinotrapezius muscle, including increased oxidative capacity and resistance to fatigue. Since the spinotrapezius muscle is commonly used in studies using intravital microscopy to examine microcirculatory function at rest and during contractions, our results suggest that downhill running is an effective training paradigm that can be used to investigate the mechanisms for improved microcirculatory function following exercise training in health and disease.  相似文献   

7.
Congenital disorders of glycosylation (CDGs) are a rapidly enlarging group of inherited diseases with abnormal N-glycosylation of glycoconjugates. Most patients have CDG-Ia, which is due to a phosphomannomutase (PMM) deficiency. In this article, we report that a significant portion (9 of 54) of patients with CDG-Ia had a rather high residual PMM activity in fibroblasts included in the normal range (means of the controls +/- 2 SD) and amounting to 35%-70% of the mean control value. The clinical diagnosis of CDG-Ia was made difficult by the fact that most (6 of 9) of these patients belong to a subgroup characterized by a phenotype that is milder than classical CDG-Ia. These patients lack some of the symptoms that are suggestive for the diagnosis, such as inverted nipples and abnormal fat deposition, and, as a mean, had higher residual PMM activities in fibroblasts (2.05+/-0.61 mU/mg protein, n=9; vs. controls 5.34+/-1.74 mU/mg protein, n=22), compared with patients with moderate (1.32+/-0.86 mU/mg protein, n=18) or severe (0.63+/-0.56 mU/mg protein, n=27, P<.001) cases. Yet they all showed mild mental retardation, hypotonia, cerebellar hypoplasia, and strabismus. All of them had an abnormal serum transferrin pattern and a significantly reduced PMM activity in leukocytes. Six of the nine patients with mild presentations were compound heterozygotes for the C241S mutation, which is known to reduce PMM activity by only approximately 2-fold. Our results indicate that intermediate PMM values in fibroblasts may mask the diagnosis of CDG-Ia, which is better accomplished by measurement of PMM activity in leukocytes and mutation search in the PMM2 gene. They also indicate that there is some degree of correlation between the residual activity in fibroblasts and the clinical phenotype.  相似文献   

8.
Digestive enzymes of Catla catla were studied during ontogenic development. Specific amylase activity was 0.12+/-0.01 mg maltose mg protein(-1) h(-1) in fish 4 days after hatching (DAH) and reached a maximum on (0.41+/-0.12 mg maltose mg protein(-1) h(-1)) 34 DAH. Total protease activity was minimum (123.2+/-16.5 mU mg protein(-1) min(-1)) on day-8 and reached its highest level (2713+/-147.2 mU mg protein(-1) min(-1)) on day-32. Trypsin activity showed constant increasing trend from day-16 onwards and was maximum on day-34 (118.1+/-7.09 mU mg protein(-1) min(-1)). Highest chymotrypsin activity was found on day-32 (1789.0+/-111.7 mU mg protein(-1) min(-1)). Lipase activity was detected in 4 DAH catla. Lipase activity increased steadily from day-22 onwards. SDS-PAGE of crude enzyme extracts showed that high molecular mass bands (41.8-127.8 kDa) appeared during the early stages followed by low molecular mass bands (17.8-37.2 kDa). The number of protease activity bands in substrate SDS-PAGE increased with age of fish. During ontogenesis of carp, soybean trypsin inhibitor (SBTI), PMSF and TLCK inhibited 75.5+/-1.19% to 92.8+/-0.85%, 53.3+/-9.47% to 90.5+/-2.6% and 39.8+/-3.8% to 84.7+/-1.54% of total protease activity, respectively. There was only 2.58+/-0.66% to 10.21+/-0.09% inhibition of protease activity with EDTA. SBTI and PMSF inhibited 8 and 4 activity bands, respectively. TLCK, a specific trypsin inhibitor, inhibited four trypsin-like enzymes in carp during ontogenesis.  相似文献   

9.
2-Deoxy-2-[(18)F]fluoro-D-glucose ([(18)F] FDG) is used for PET imaging of woodchuck (Marmota monax) model of hepatocellular carcinoma (HCC). The usefulness of FDG on this animal model needs to be validated according to the hypothesized mechanisms. In this study, two key enzymes involved in glucose or [(18)F] FDG metabolism, hexokinase (HK) and glucose-6-phophatase (G6Pase), were examined for their enzymatic activities in the woodchuck models of HCC, which has not been studied before. After dynamic PET scans, woodchuck liver tissue samples were harvested and the homogenate was centrifuged. The supernatant was used for HK activity assay and the microsomal pellet was used for G6Pase assay. HK and G6Pase activities were measured by means of colorimetric reactions via kinetic and end-point assays, respectively. Total protein content was measured by the Bradford method and used to normalize all enzyme activities. HK and G6Pase activities in woodchuck HCC will be used to correlate with in vivo PET imaging data. The woodchuck model of HCC had significantly increased levels of HK in the livers compared to the age-matching healthy woodchuck (7.96 +/- 1.27 vs. 2.74 +/- 0.66 mU/mg protein, P < 0.01) and significantly decreased levels of G6Pase compared to healthy woodchuck (40.35 +/- 19.28 vs. 237.01 +/- 17.32 mU/mg protein, P < 0.01), reflecting an increase in glycolysis. In addition, significant differences were found in HK and G6Pase activities between HCC liver region (HK: 7.96 +/- 1.27 mU/mg protein; G6Pase: 40.35 +/- 19.28 mU/mg protein) and surrounding normal liver region (HK: 2.98 +/- 0.92 mU/mg protein; G6Pase: 140.87 +/- 30.62 mU/mg protein) in the same woodchuck model of HCC (P < 0.01). Our study demonstrated an increased HK activity and a decreased G6Pase activity in liver of the woodchuck models of HCC as compared to normal woodchuck liver.  相似文献   

10.
To verify the aldosterone amplifying action of 19-hydroxyandrostenedione (19-OH-AD), we investigated [3H]aldosterone and [3H]19-OH-AD binding to type I (mineralocorticoid) receptor in the renal cytosol of adrenalectomized and ovariectomized rat, and human mononuclear leucocytes (MNL). In the [3H]aldosterone binding study, the cytosol was incubated with [3H]aldosterone and 200-fold RU28362 (11 beta,17 beta-dihydroxy-6-methyl,17 alpha-(1-propynyl)-androsta-1,4,6- trien-3-one), a pure glucocorticoid, with or without 19-OH-AD. Scatchard plots of [3H]aldosterone binding to cytosol with 0.2 or 20 nM 19-OH-AD or without 19-OH-AD were linear. Dissociation constants (Kd) and maximum bindings (Bmax) without 19-OH-AD, and with 0.2 and 20 nM 19-OH-AD were: 0.71 +/- 0.03 nM and 23.0 +/- 3.4 fmol/mg protein (mean +/- SD, n = 3), 0.72 +/- 0.05 nM and 23.1 +/- 2.3 fmol/mg protein (n = 3), and 0.77 +/- 0.04 nM and 22.9 +/- 4.8 fmol/mg protein (n = 3), respectively. 19-OH-AD did not significantly change the Kd and Bmax of [3H]aldosterone binding. A high concentration of 19-OH-AD slightly displaced 0.2 or 5 nM [3H]aldosterone bound to cytosol. In human MNL, Scatchard plots of [3H]aldosterone binding with both 0.2 and 20 nM 19-OH-AD and without 19-OH-AD were linear. Kd and Bmax were, respectively, 1.00 nM and 780 sites/cell in the absence of 19-OH-AD, and 1.07 nM and 774 sites/cell in the presence of 0.2 nM 19-OH-AD. Without 19-OH-AD they were, respectively, 0.95 nM and 551 sites/cell, and 1.10 nM and 560 sites/cell with 20 nM 19-OH-AD. A high concentration of 19-OH-AD slightly displaced 0.2 or 5 nM of [3H]aldosterone bound to MNL. In both tissues, there was no obvious specific binding of [3H]19-OH-AD within the range of 1-60 nM. The above results suggest that the amplifying effect of 19-OH-AD on aldosterone mineralocorticoid action may not occur at the binding site of aldosterone to type I receptor, and that 19-OH-AD itself may not have any direct or indirect mineralocorticoid actions on the steroid receptor-mediated process in the rat kidney and human MNL.  相似文献   

11.
This study examines the response in plasma erythropoietin values to haemorrhage of 20% of the estimated blood volume in chronically cannulated ovine fetuses, of gestational ages 128-144 days. Blood samples were collected at 0, 2, 4, 6 and 24h with respect to the haemorrhage. In 5 control experiments there was no significant change in plasma erythropoietin concentration, across this time period, values being 6.1 +/- 2.3 and 6.4 +/- 2.4 mU/ml at 0 and 24h respectively. Values are mean +/- SEM. Haemorrhage reduced the haematocrit and haemoglobin values, significantly, to 83 +/- 6% and 85 +/- 4% (n = 5) of the initial value, respectively, but did not cause a statistically significant increase in plasma erythropoietin concentrations (7.2 +/- 2.4 and 20.7 +/- 8.2 mU/ml; P = 0.131). A larger degree of haemorrhage, in four fetuses reduced the haematocrit to 64 +/- 2.8% of initial, over 24-54h and increased erythropoietin values very significantly (from 11.9 +/- 3.6 to 91 +/- 8.3 mU/ml; P = 0.001).  相似文献   

12.
Somatostatin-like immunoreactivity was measured by radioimmunoassay with a monoclonal antibody in lungs from perinatal guinea pigs (62 +/- 2 days of gestation). Fetuses delivered by Caesarean section and dissected before breathing showed 4748 +/- 758 pg/lung (n = 25). Fetuses allowed to breathe (neonates) showed marked increases in activity: 7629 +/- 1355 pg/lung (n = 12) after breathing 30 seconds, and 10729 +/- 1064 pg/lung (n = 6) after breathing 3 minutes (2.3-fold increase, P < 0.005). Values then declined (5203 +/- 1050 pg/lung (n = 9) at 30 minutes; 1458 +/- 105 pg/lung (n = 4) at 60 minutes). Changes were similar in pg/g wet tissue. HPLC characterized the immunoreactive peptides as somatostatin-14 (SS-14) and somatostatin-28 (SS-28) in both fetuses and neonates (n = 11). SS-28 made up only 13.7 +/- 1.7% of the activity; this percentage did not change with breathing. The effects of synthetic SS-14 on lung liquid production were investigated in in vitro lungs from 42 fetal guinea pigs. All 21 preparations immersed in 10(-5)-10(-7) M SS-14 during the middle hour of 3 h incubations reduced production, often approaching zero after treatment (rates, ml/kg body weight per h, succeeding hours: 10(-5) M (n = 9), 3.09 +/- 0.68, 0.93 +/- 0.39, -0.05 +/- 0.60 (fall significant during and after treatment, P < 0.025-0.005); 10(-6) M (n = 6), 3.06 +/- 0.68, 1.29 +/- 0.58, 0.36 +/- 0.38 (P < 0.05-0.005); 10(-7) M (n = 6), 1.96 +/- 0.66, 1.11 +/- 0.34, 0.64 +/- 0.28 (P < 0.05-0.025).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of this study was to measure serum creatine kinase (CK) activity and serum myoglobin (MG) concentrations in women after two unilateral isometric knee extension exercises. Forty maximal voluntary contractions (MVC) were held for 10 s, with either a 5 s (10:5) or 20 s 10:20 exercise (349.4 +/- 66.1 mU . ml-1) and 6 h and MG values were measured pre, 0, 3, 6, and 18 h post exercise. For CK, the highest post exercise values were observed at 6 h following the 10:20 exercise (349.4 +/- 66.1 mU . ml-1) and 6 h following the 10:5 exercise (194.1 +/- 18.6 mU . ml-1). For MG, the highest values were found 3 h after the 10:20 exercise (148.9 +/- 61.7 ng . ml-1) and 6 h after the 10:5 exercise (67.3 +/- 10.9 ng . ml-1). Serum CK and MG levels were significantly greater (p less than 0.01) after the 10:20 exercise bout. The data demonstrate that CK and MG values for women increase significantly after isometric exercise. Since greater tension levels were maintained during the 10:20 exercise it is hypothesized that increased serum CK and MG values after isometric exercise may be related to the tension generated by the contracting muscle.  相似文献   

14.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

15.
Protein kinase activity was determined in subcellular fractions of rat testis interstitial tissue after incubation of the intact tissue with LH (luteinizing hormone) in vitro. Various factors that might have changed the activity of this enzyme during preparation of the fractions before assay were also investigated. The following results were obtained. 1. LH and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) added together during incubation of the interstitial tissue caused a twofold increase in the protein kinase activity in the total tissue homogenate and subcellular fractions (12000g X 5 min pellet and 105000g X 60 min supernatant and pellet). 2. A decrease of approx. 40% in the total amount of protein kinase recovered in the soluble fraction (105000g supernatant) occurred in tissue incubated with LH and 3-isobutyl-1-methylxanthine when compared with the controls. No change in total activity was found in the other fractions. 3. LH and 3-isobutyl-1-methylxanthine caused an increase in cyclic AMP concentration in the soluble fraction (from 30 +/- 6 to 450 +/- 40 pmol/mg of protein, means +/- S.E.M., n = 4), but there was little or no increase in the particulate fractions [from 9 +/- 1 to 13 +/- 3 pmol/mg of protein (n = 3) and from 6 +/- 2 to 23 +/- 11 pmol/mg of protein (n = 3) in the 12000g and 105000g pellets respectively]. 4 Addition of 3-isobutyl-1-methylxanthine alone had little effect on protein kinase activity or cyclic AMP concentrations. 5. Little or no protein kinase activity could be demonstrated in subcellular particulate fractions unless Triton X-100 was added; the effect of this detergent was shown to be at least partly due to the inhibition of adenosine triphosphatase activity. 6. In the presence of Triton X-100 approx. 57% of the total protein kinase activity in the homogenate was found in the 105000g supernatant compared with 11% in the 105000g pellet and 32% in the 12000g pellet. 7. In contrast with adipose-tissue protein kinase [Corbin et al. (1973) J. Biol. Chem. 248, 1813-1821] the relative amounts of cyclic AMP-dependent and -dependent enzyme were not affected by dilution of the interstitial-tissue fractions. NaCl (0.5 M) decreased the estimated total amount of protein kinase activity.  相似文献   

16.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

17.
Survival in severe hypoxia such as occurs in high altitude requires previous acclimatization, which is acquired over a period of days to weeks. It was unknown whether intrinsic mechanisms existed that could be rapidly induced and could exert immediate protection on unacclimatized individuals against acute hypoxia. We found that mice pretreated with whole-body hypoxic preconditioning (WHPC, 6 cycles of 10-min hypoxia-10-min normoxia) survived significantly longer than control animals when exposed to lethal hypoxia (5% O2, survival time of 33.2 +/- 6.1 min vs. controls at 13.8 +/- 1.2 min, n = 10, P < 0.005). This protective mechanism became operative shortly after WHPC and remained effective for at least 8 h. Accordingly, mice subjected to WHPC demonstrated improved gas exchange when exposed to sublethal hypoxia (7% O2, arterial blood Po2 of 49.9 +/- 4.2 vs. controls at 39.7 +/- 3.6 Torr, n = 6, P < 0.05), reduced formation of pulmonary edema (increase in lung water of 0.491 +/- 0.111 vs. controls at 0.894 +/- 0.113 mg/mg dry tissue, n = 10, P < 0.02), and decreased pulmonary vascular permeability (lung lavage albumin of 7.63 +/- 0.63 vs. controls at 18.24 +/- 3.39 mg/dl, n = 6-10, P < 0.025). In addition, the severity of cerebral edema caused by exposure to sublethal hypoxia was also reduced after WHPC (increase in brain water of 0.254 +/- 0.052 vs. controls at 0.491 +/- 0.034 mg/mg dry tissue, n = 10, P < 0.01). Thus WHPC protects unacclimatized mice against acute and otherwise lethal hypoxia, and this protection involves preservation of vital organ functions.  相似文献   

18.
The endothelial cell surface expression of ecto-5'-nucleotidase (E5'N, CD73) is thought to be essential for the extracellular formation of cytoprotective, anti-thrombotic and immunosuppressive adenosine. Decreased E5'N activity may play a role in xenograft acute vascular rejection, preventing accommodation and tolerance mechanisms. We investigated the extent of changes in E5'N activity and other enzymes of purine metabolism in porcine hearts or endothelial cells when exposed to human blood or plasma and studied the role of humoral immunity in this context. Pig hearts, wild type (WT, n = 6) and transgenic (T, n = 5) for human decay accelerating factor (hDAF), were perfused ex vivo with fresh human blood for 4 h. Pig aortic endothelial cells (PAEC) were exposed for 3 h to autologous porcine plasma (PP), normal (NHP) or heat inactivated human plasma (HHP), with and without C1-inhibitor. Enzyme activities were measured in heart or endothelial cell homogenates with an HPLC based procedure. The baseline activity of E5'N in WT and T porcine hearts were 6.60 +/- 0.33 nmol/min/mg protein and 8.54 +/- 2.10 nmol/min/mg protein respectively (P < 0.01). Ex vivo perfusion of pig hearts with fresh human blood for 4 h resulted in a decrease in E5'N activity to 4.01 +/- 0.32 and 4.52 +/- 0.52 nmol/min/mg protein (P < 0.001) in WT and T hearts respectively, despite attenuation of hyperacute rejection in transgenic pigs. The initial PAEC activity of E5'N was 9.10 +/- 1.40 nmol/min/mg protein. Activity decreased to 6.76 +/- 0.57 and 4.58 +/- 0.47 nmol/min/mg protein (P < 0.01) after 3 h exposure of HHP and NHP respectively (P < 0.05), whereas it remained unchanged at 9.62 +/- 0.88 nmol/min/mg protein when incubated with PP controls. C1-inhibitor partially preserved E5'N activity, similar to the effect of HHP. Adenosine deaminase, adenosine kinase and AMP deaminase (other enzymes of purine metabolism) showed a downward trend in activity, but none were statistically significant. We demonstrate a specific decrease in E5'N activity in pig hearts following exposure to human blood which impairs adenosine production resulting in a loss of a cytoprotective phenotype, contributing to xenograft rejection. This effect is triggered by human humoral immune responses, and complement contributes but does not fully mediate E5'N depletion.  相似文献   

19.
Thiols like glutathione may serve as reducing cofactors in the production of nitric oxide (NO) and protect NO from inactivation by radical oxygen species. Depletion of thiol compounds reduces NO-mediated vascular effects in vitro and in vivo. The mechanisms underlying these actions are not clear, but may involve decreased synthesis of NO and/or increased degradation of NO. This study investigates the effect of glutathione depletion on the response to NO-mediated vasodilation induced by acetylcholine (Ach, 10 micrograms/kg), endothelial NO synthase (eNOS) activity and potential markers of vascular superoxide anion (O2.-) production in conscious chronically catheterized rats. Thiol depletion induced by buthionine sulfoximine (BSO, 1 g i.p. within 24 h) decreased the hypotensive effect of Ach by 30% (MAP reduction before BSO 27 +/- 3 mmHg, 19 +/- 3 mmHg after BSO, (mean +/- SEM), p < .05, n = 8). The impaired effect of Ach was associated with a significant reduction in eNOS activity (control: 7.7 +/- 0.8, BSO: 3.9 +/- 0.4 pmol/min/mg protein (p < .05), n = 6). In contrast, neither NADH/NADPH driven membrane-associated oxidases nor lucigenin reductase activity were significantly (p < .05) affected by BSO (BSO: 4415 +/- 123, control: 4105 +/- 455 counts/mg; n = 6) in rat aorta. It is concluded that in vivo thiol depletion results in endothelial dysfunction and a reduced receptor-mediated vascular relaxation. This effect is caused by reduced endothelial NO formation.  相似文献   

20.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号