首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two uracil-DNA glycosylase (ung) mutation selection procedures based upon the ability of uracil glycosylase to degrade the chromosomes of organisms containing uracil-DNA were devised to obtain a collection of well-defined ung alleles. In an enrichment procedure, lysogens were selected from Escherichia coli cultures infected with lambda pKanr phage containing uracil in their DNA. (These uracil-DNA phage were prepared by growth on host cells deficient in both dUTPase and uracil-DNA glycosylase.) The lysogenic Kanr population was enriched for uracil glycosylase-deficient mutants by a factor of 10(4). In a phage suicide selection procedure, lambda pung+ phage were unable to form plaques on dut ung cells containing uracil-DNA in their chromosomes, and all of the progeny were lambda pung-. Deletion, insertion (ung::Mu and ung::Tn10), nonsense, and missense mutants were isolated by using these procedures. Extracts of three insertion mutants contained no detectable enzyme activity. All of the other mutant isolates had less than 1% of the normal uracil glycosylase specific activity. The previously studied ung-1 allele, which was derived by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, produced about 0.02% of the normal amount of uracil glycosylase activity. No significant phenotypic differences between ung-1 and ung::Tn10 alleles were observed. Variations of the lysogen selection procedure may be helpful for isolating other DNA glycosylase mutations in E. coli and other organisms.  相似文献   

2.
An Escherichia coli uracil-DNA glycosylase-defective mutant (ung-1 thyA) was more resistant than its wild-type counterpart (ung+ thyA) to the killing effect of UV light when cultured in medium containing 5-bromouracil or 5-bromo-2'-deoxyuridine (BrdUrd). The phenotype of resistance to BrdUrd photosensitization and the uracil-DNA glycosylase deficiency appeared to be 100% cotransduced by P1 phage. During growth with BrdUrd, both strains exhibited similar growth rates and 5-bromouracil incorporation into DNA. The resistant phenotype of the ung-1 mutant was observed primarily during the stationary phase. In cells carrying 5-bromouracil-substituted DNA, mutations causing resistance to rifampin and valine were induced by UV irradiation at a higher frequency in the wild type than in the ung-1 mutant. This Ung-dependent UV mutagenesis required UmuC function. These results suggest that the action of the uracil-DNA glycosylase on UV-irradiated 5-bromouracil-substituted DNA produces lethal and mutagenic lesions. The BrdUrd photosensitization-resistant phenotype allowed us to develop a new, efficient method for enriching and screening ung mutants.  相似文献   

3.
L V Konevega  V L Kalinin 《Genetika》1985,21(7):1105-1110
Survival of phage lambda cI857 inactivated by bisulfite (pH 5.6, 37 degrees C) is higher (the dose modification factor approx. 1.2) and frequency of bisulfite-induced c-mutations 2-4-fold lower on the lawn of the wild-type strain ung+, as compared to ung-1 mutant deficient in uracil-DNA glycosylase. Irradiation of host cells by a moderate UV dose inducing SOS repair system enhances the frequency of bisulfite-induced c-mutations 2-3-fold in the wild-type (ung+) host, but not in the ung-1 mutant. It is suggested that W-mutagenesis in bisulfite-treated lambda phage in the ung+ cells is due to SOS repair of apyrimidinic sites which are produced during excision of uracil residues, the products of cytosine deamination.  相似文献   

4.
Repair of thymine.guanine (T.G) and uracil.guanine (U.G) mismatched base-pairs in bacteriophage M13mp18 replicative form (RF) DNA was compared upon transfection into repair-proficient or repair-deficient Escherichia coli strains. Oligonucleotide-directed mutagenesis was used to prepare covalently closed circular heteroduplexes that contained the mismatched base-pair at a restriction recognition site. The heteroduplexes were unmethylated at dam (5'-GATC-3') sites to avoid methylation-directed biasing of repair. In an E. coli host containing uracil-DNA glycosylase (ung+), about 97% of the transfecting U.G-containing heteroduplexes had the U residue excised by the uracil-excision repair system. With the analogous T.G mispair, mismatch repair operated on almost all of the transfecting heteroduplexes and removed the T residue in about 75% of them when the mismatched T was on the minus strand of the RF DNA. Similar preferential excision of the minus-strand's mismatched base was observed whether the heteroduplex RF DNA molecules had only one or both strands unmethylated at dcm (5'-CC(A/T)GG-3') sites and whether the RF DNA was prepared by primer extension in vitro or by reannealing mutant and non-mutant DNA strands. Also, the extent and directionality of repair was the same at a U.G mispair in ung- host cells as at the analogous T.G mispair in ung- or ung+ cells. Only in a mismatch repair-deficient (mutH-) host was the plus strand of the transfecting M13mp18 heteroduplex DNA preferentially repaired. It is suggested that the plus strand nick made by the M13-encoded gene II protein might be employed by a mutH- host to initiate repair on that strand.  相似文献   

5.
A number of mutant strains of Escherichia coli have been examined for their sensitivity to nitrous acid and in some instances to methylmethanesulfonate. All ung- mutants tested are abnormally sensitive to nitrous acid. Since the ung mutation is phenotypically expressed as a defect in uracil DNA glycosidase, this observation supports the contention that treatment of cells with nitrous acid causes deamination of cytosine to uracil. In addition the observed sentitivity indicates that the ung gene is involved in the repair of uracil in DNA. Studies with other mutants suggest that both exonuclease III and DNA polymerase I of E. coli are involved in the repair of nitrous acid damage in vivo.  相似文献   

6.
Oligonucleotide site-directed mutagenesis in Xenopus egg extracts.   总被引:1,自引:1,他引:0  
Addition of M13mp18 single-stranded DNA annealed with an oligonucleotide to a Xenopus egg extract results in a rapid and efficient incorporation of the oligonucleotide in a complete double-stranded supercoiled molecule. Both the efficiency of DNA synthesis and the recovery of complete double-stranded molecules are increased relative to the reaction carried out by the classical technique using the E. coli Klenow DNA polymerase, DNA ligase, dNTPs, ATP and ions. Site specific mutagenesis was assayed by reverting a point mutation in the lacz region of M13mp18. The color assay described by Messing and sequencing of the DNA extracted from isolated plaques was used to check for the reversion. A 2 hr incubation of the heteroduplex carrying the mutagenic oligonucleotide in the Klenow-ligase-dNTP mixture allows a recovery of 6% mutant phage after transformation of competent cells with the reaction products. Using the Xenopus egg extract, 83% mutant phage were recovered after the same incubation time, in reactions entirely performed in parallel. The Xenopus extract is stable and contains all components required for the assay, including all ionic and protein factors; thus the only addition is the annealed DNA. Such an eukaryotic system is therefore an attractive alternative to the reconstituted prokaryotic DNA polymerase-DNA ligase system for site specific mutagenesis.  相似文献   

7.
A coliphage M13 chimer containing the Saccharomyces cerevisiae TRP1 gene and ARS1 replication origin (mPY2) was grown on an ung- dut- strain of Escherichia coli. The resulting single-stranded phage DNA had 13% of thymine residues substituted by uracil. This DNA failed to transform a delta trp1 yeast strain to prototrophy. However, when a mutagenized yeast stock was transformed with uracil-containing single-stranded mPY2 DNA, unstable transformants were obtained. After plasmid segregation, about half of these were retransformed at a high frequency by uracil-containing single-stranded mPY2 DNA. In vitro, these mutants were defective for uracil-DNA-glycosylase activity. They were designated ung1. Strains containing the ung1 mutation have an increased sensitivity to sodium bisulfite and sodium nitrite but a wild-type sensitivity to methyl methanesulfonate, UV light, and drugs that cause depletion of the thymidylate pool. They have a moderate mutator phenotype for nuclear but not for mitochondrial genes. A low mitochondrial uracil-DNA-glycosylase activity was demonstrated in the mutant strains.  相似文献   

8.
S S Ner  T C Atkinson    M Smith 《Nucleic acids research》1989,17(11):4015-4023
We describe a method for the generation of random point deletions in any target DNA sequence using synthetic mixed oligonucleotides. A mixed pool of oligonucleotides, which contain single nucleotide deletions randomly distributed throughout the full length, was generated by a modification of the synthesis cycle of an automated DNA synthesiser that allowed the inefficient incorporation of nucleotide monomers during each cycle of synthesis. A family of oligonucleotides was used to prime in vitro synthesis of the complementary strand of a cloned DNA fragment in an M13 vector which had previously been passaged through a dut-, ung- Escherichia coli host. Strong selection for progeny from the newly synthesised strand is provided by transforming the heteroduplex into a dut+, ung+ host. This procedure introduced point deletions at 10-25% efficiency. It has been used to introduce point deletions into operator sequences which bind the yeast regulatory proteins encoded by MATa1 and MAT alpha 2.  相似文献   

9.
The mismatch correction has been studied in human cells and presented in this paper. In the study the experimental model with half-containing hetroduplex (-1 residue in the polylinker region of lac gene) M13 DNA has been used. M 13 DNA was isolated from human cells 24 hours after transfection and transformed into ung+ and ung- cells of Escherichia coli. The percentage of lac- colonies (formed due to frameshift mutation in the lac gene) was analyzed. The increased percent of lac- mutations after human transfection indicated that DNA-uracil can polarize mismatch correction in human cells.  相似文献   

10.
The steady-state levels of uracil residues in DNA extracted from strains of Escherichia coli were measured and the influence of defects in the genes for uracil-DNA glycosylase (ung), double-strand uracil-DNA glycosylase (dug), and dUTP pyrophosphatase (dut) on uracil accumulation was determined. A sensitive method, called the Ung-ARP assay, was developed that utilized E. coli Ung, T4pdg, and the Aldehyde Reactive Probe reagent to label abasic sites resulting from uracil excision with biotin. The limit of detection was one uracil residue per million DNA nucleotides (U/10(6)nt). Uracil levels in the genomic DNA of E. coli JM105 (ung+ dug+) were at the limit of detection, as were those of an isogenic dug mutant, regardless of growth phase. Inactivation of ung in JM105 resulted in 31+/-2.6 U/10(6)nt during early log growth and 19+/-1.7 U/10(6)nt in saturated phase. An ung dug double mutant (CY11) accumulated 33+/-2.9 U/10(6)nt and 23+/-1.8U/10(6)nt during early log and saturated phase growth, respectively. When cultures of CY11 were supplemented with 20 ng/ml of 5-fluoro-2'-deoxyuridine, uracil levels in early log phase growth DNA rose to 125+/-1.7 U/10(6)nt. Deoxyuridine supplementation reduced the amount of uracil in CY11 DNA, but uridine did not. Levels of uracil in DNA extracted from CJ236 (dut-1 ung-1) were determined to be 3000-8000 U/10(6)nt as measured by the Ung-ARP assay, two-dimensional thin-layer chromatography of metabolically-labeled 32P DNA, and LC/MS of uracil and thymine deoxynucleosides. DNA sequencing revealed that the sole molecular defect in the CJ236 dUTP pyrophosphatase gene was a C-->T transition mutation that resulted in a Thr24Ile amino acid change.  相似文献   

11.
The oligodeoxyribonucleotides, pCCCAGCCTCAA, which is complementary to nucleotides 5274--4284 of bacteriophage phi X174 viral DNA , and pCCCAGCCTAAA, which corresponds to the same sequence with a C leads to A change at the ninth nucleotide, were synthesized enzymatically. The second of these oligonucleotides was used as a primer for E. coli DNA polymerase I, from which the 5'-exonculease has been removed by proteolysis (Klenow enzyme), on wild-type phi X174 viral DNA template. After ligation, this yielded closed circular heteroduplex DNA with a G, A mismatch at nucleotide 5276. Transfection of E. coli spheroplasts with the heteroduplex DNA produced phage mutated at this nucleotide (G leads to T in the viral DNA) with high efficiency (13%). The mutant DNA, which corresponds to the gene B mutant am16, was reverted (T leads to G) by the wild type oligonucleotide with an efficiency of 19%. The nucleotide changes were established by sequence determination of the mutated viral DNA using the enzymatic terminator method. The production of specific transversion mutations, together with a previous demonstration of specific transition mutations (1), established that short enzymatically synthesized oligodeoxyribonucleotides can be used to induce any class of single nucleotide replacement with high efficiency and thus provide a powerful tool for specific genetic manipulations in circular genomes like that of phi X174.  相似文献   

12.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

13.
The prophage lambdac1857 was inserted into the bfe gene located near rif (the structural gene for the beta subunit of deoxyribonucleic acid [DNA]-dependent ribonucleic acid polymerase) on the Escherichia coli chromosome. Induced lysates (low-frequency transducing lysates) of such a lysogen contained defective lambda phage particles (lambdadrif+) that can specifically transduce the wild-type rif+ gene. Upon transduction into a recipient strain carrying recA, heterogenotes harboring both the wild-type and the mutant rif genes were isolated. Rec+ derivatives of these heterogenotes produce high-frequency transducing lysates that contain lambdadrif+ and normal active phages at a ratio of 1 to 2. The results of marker rescue experiments and of density determination with several transducing phages indicate that most of the late genes are deleted and replaced by a segment of the chromosomal DNA carrying the bfe-rif region. The length of the chromosomal segment seems to vary between approximately 0.5 and 0.6% of the total bacterial DNA among the three independently isolated lambdadrif+ phages. Electron microscopy of heteroduplex DNA consisting of one strand from lambdadrif+-6 and the other from lambdaimm-21 phages directly confirmed that most of the phage DNA of the "left arm" was replaced by the bacterial DNA. The heteroduplex study also demonstrated that the integration of prophage lambda into the bfe region occurred at the normal cross-over point within the phage attachment site.  相似文献   

14.
Bacteriophage T5 induces a deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) activity during infection of Escherichia coli. A T5 mutant (T5 dut) unable to induce this dUTPase activity has been isolated. Although this mutant is viable, the E. coli dUTPase activity is not sufficiently active to exclude uracil from the progeny DNA and about 3% of the thymine is replaced by uracil. When the mutant is grown in an E. coli dut host about 12% of the thymine in the progeny DNA is replaced by uracil. T5 phage containing 12% uracil can replicate in uracil-DNA glycosylase-deficient (ung) hosts with high efficiency, but fail to replicate in ung+ hosts. The amount of thymine replaced by uracil in the progeny produced in dut hosts is nearly independent of the ung genotype, indicating that the host uracil-DNA glycosylase-dependent repair pathway is not operating efficiently to remove uracil from T5 progeny DNA.  相似文献   

15.
DNA molecules of phi 80sus2psu3+ and phi 80dsu3+ isolated by Andoh and Ozeki (1968) were studied by the electron microscope heteroduplex method. The phi 80sus2psu3+ and phi 80dsu3+ DNA lengths were found to be 108.7 and 103.3% of the phi 80 DNA, respectively. The phi 80sus2psu3+/phi 80 heteroduplex shows an insertion loop of 8.7% of the phi 80 DNA which migrates from 7.7 to 9.7%, as measured relative to the left (0%) and right (100%) termini of the mature phi 80 DNA molecule. The region of loop migration occupies the central region of the phi 80 head gene cluster. The presence of su3+-containing Escherichia coli DNA of 6.7% phi 80 unit flanked by two homologous regions of phage DNA of 2.0% of phi 80 unit gives rise to a movable insertion loop. In phi 80dsu3+, from which phi 80sus2psu3+ was derived, 50.5% of the phi 80 DNA at the left arm was replaced by E. coli DNA containing the su3+ gene, equivalent to about 53.8% phi 80 unit in length. The phi 80sus2psu3+/phi 80dsu3+ heteroduplex appears as a double-stranded molecule that bifurcates into two clearly visible single-stranded regions, rejoins, bifurcates, and rejoins again. The middle double-stranded stretches of 6.7% phi 80 unit correspond to the E. coli DNA inserted in phi 80sus2psu3+. Therefore the transducing fragment carried by phi 80sus2psu3+ originates from the inside region of the transducing fragment of defective phage phi 80dsu3+ by at least two illegitimate recombination events.  相似文献   

16.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

17.
Selective Allele Loss in Mixed Infections with T4 Bacteriophage   总被引:11,自引:4,他引:7       下载免费PDF全文
Evidence is presented that when E. coli B is mixedly infected with T4D wild type and rII deletion mutants, the excess DNA of the wild type allele is lost. No loss is seen in mixed infections with rII point mutants and wild type. In similar experiments with lysozyme addition mutants, the mutant allele is lost. We believe these results demonstrate a repair system which removes "loops" in heteroduplex DNA molecules. A number of phage and host functions have been tested for involvement in the repair of the excess DNA, and T4 genes x and v have been implicated in this process.  相似文献   

18.
Gene-targeted knockout mice have been generated lacking the major uracil-DNA glycosylase, UNG. In contrast to ung- mutants of bacteria and yeast, such mice do not exhibit a greatly increased spontaneous mutation frequency. However, there is only slow removal of uracil from misincorporated dUMP in isolated ung-/- nuclei and an elevated steady-state level of uracil in DNA in dividing ung-/- cells. A backup uracil-excising activity in tissue extracts from ung null mice, with properties indistinguishable from the mammalian SMUG1 DNA glycosylase, may account for the repair of premutagenic U:G mispairs resulting from cytosine deamination in vivo. The nuclear UNG protein has apparently evolved a specialized role in mammalian cells counteracting U:A base pairs formed by use of dUTP during DNA synthesis.  相似文献   

19.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:27,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

20.
Organization and transcription of the dnaA and dnaN genes of Escherichia coli   总被引:13,自引:0,他引:13  
Y Sakakibara  H Tsukano  T Sako 《Gene》1981,13(1):47-55
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号