首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three newH-2 b mutant strains, B6.C-H-2 bm9 , B6.C-H-2 bm10 and B6.C-H–2 bm11 , are described. The three mutant strains are of the gain and loss type as they reject skin grafts reciprocally with the parental C57BL/6Kh. The mutations, which arose independently, are all allelic at the same locus as 11 other mutant strains already described. By complementation and other studies the mutated gene has been shown to beH-2K b . The strains were typed directly and by absorption with antisera specific for H-2Kb and H-2Db private and public specificities and for Iab specificities. Each strain typed differently with these sera. The strain B6.C-H-2 bm9 was found to be serologically identical with C57BL/6. The strains B6.C-H-2 bm10 and B6.C-H-2 bm11 were found to have alterations in the private H-2Kb specificity, H-2.33, and in the public specificity, H-2.5, but to a different extent. B6.C-H- 2bm10 had a marked decrease in the amount of H-2.33 expressed on the splenic cell surface as compared to C57BL/6 and also has a marked decrease in the expression of H-2.5 on both spleen and red blood cells. In comparison, B6.C-H-2 bm11 has a decrease in the expression of H-2.33 but an increase in the expression of H-2.5 on both splenic and red blood cells. The other H-2b specificities appeared to be unaltered as compared with C57BL/6.  相似文献   

2.
The immune responses to several antigens were compared in the I-A mutant mouse strain B6.C-H-2bm12 and the wild-type strain C57BL/6. With a lymph node cell proliferation assay, the response to two of these antigens, beef insulin and (TG)A-L, was demonstrated to be controlled by a gene in the I-Ab region. B6.C-H-2bm12 mice failed to respond to beef insulin, while their responses to (TG)A-L, DNP-OVA and PPD were comparable with those of the wild-type strain C57BL/6. Taken together with previous studies, these data suggest that the product of a single pleiotropic I-A gene, an la molecule, functions as a histocompatibility, la, and MLR antigen, as well as a necessary component for Ir gene function. Furthermore, the data reported here demonstrate that la molecules have multiple functional “Ir determinants,” one of which has been altered in the B6.C-H-2bm12 mutant. The B6.C-H-2bm12 mice, therefore, represent a powerful analytical tool for the understanding of the cellular and molecular basis for Ir gene control of the immune response.  相似文献   

3.
Structural studies of the H-2 gene products from a group of five closely related but independent C57BL/6 H-2 mutant mice were undertaken. Each of the mutants exhibits reciprocal graft rejection with the parent. The group is remarkable, however, because each member of this group can accept skin grafts from any other member. The results of biochemical analysis of the H-2 glycoproteins from two of these related mutants, bm5 and bm16, are presented in this report. Evidence is given that the H-2K molecules from these two mutants are identical to each other based on comparative tryptic peptide mapping profiles with the parent. From partial amino acid sequence analysis, K products of both mutants have at least one common difference from the parental type located at residue number 116. Definitive studies established that in both bm5 and bm16 a tryosine found in the parent molecule is substituted with a phenylalanine in the mutant. These results show that a biochemical difference between the K products of the two mutants and of the parent can be detected, that the mutants appear to be identical with one another even though they arose independently, and that they differ from the other H-2K b mutants analyzed.Abbreviations used in this paper B6 C57BL/6Kh - bm5 B6-H-2bm5 - bm6 B6-H-2 bm6 - bm7 B6.C-H-2 bm7 - bm9 B6.C-H-2 bm9 - bm16 B6-H-2 bm16 - D H-2D - K H-2K - MHC major histocompatibility complex  相似文献   

4.
Experimental autoimmune myasthenia gravis (EAMG) is an important model for testing current concepts in autoimmunity and novel immunotherapies for autoimmune diseases. The EAMG autoantigen, acethylcholine receptor (AChR), is structurally and immunologically complex, a potential obstacle to the application of therapeutic strategies aimed at oligoclonal T cell populations. Inasmuch as we had previously shown that the clonal heterogeneity of T cell epitope recognition in EAMG was unexpectedly limited, we examined TCR V beta expression. AChR primed lymph node T cells and established AChR reactive T cell clones from EAMG-susceptible C57BL/6 (B6; H-2b, Mls-1b) mice showed preferential utilization of the TCR V beta 6 segment of the TCR. After in vivo priming and in vitro restimulation for 7 days with AChR or a synthetic peptide bearing an immunodominant epitope, V beta 6 expressing lymph node cells (LNC) were expanded several-fold, accounting for up to 75% of recovered viable CD4+ cells. The LNC of B6.C-H-2bm12 (bm12; H-2bm12, Mls-1b) mice, which proliferated in response to AChR but not to the B6 immunodominant peptide, failed to expand V beta 6+ cells. Inasmuch as nonimmune bm12 and B6 animals had similar numbers of V beta 6+ LNC (4-5%), this suggested that structural requirements for TCR recognition of Ag/MHC complexes dictated V beta usage. Results concerning peptide reactivity and V beta 6 expression among T cells from (B6 x bm12)F1 animals also suggested that structure-function relationships, rather than negative selection or tolerance, accounted for the strain differences between B6 and bm12. To examine the potential effects of thymic negative selection of V beta 6+ cells on the T cell response to AChR, CB6F1 (H-2bxd, Mls-1b; V beta 6-expressing) and B6D2F1 (H-2bxd, Mls-1axb; V beta 6-deleting) strains were analyzed for AChR and peptide reactivity and V beta 6 expression. Both F1 strains responded well to AChR but the response of B6D2F1 mice to peptide was significantly reduced compared to CB6F1. Short and long term cultures of peptide-reactive B6D2F1 LNC showed no expansion of residual V beta 6+ cells, although similar cultures of CB6F1 LNC were composed of more than 60% V beta 6+ cells. The results from the F1 strains further indicated that the T cell repertoire for peptide was highly constrained and that non-V beta 6 expressing cells could only partially overcome Mls-mediated negative selection of V beta 6+ TCR capable of recognizing peptide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Previous studies of the B6.C-H-2 bm12 (bm12) strain have demonstrated the presence of a mutation localized to the I-A subregion of the mouse H-2 major histocompatibility complex. This mutation has been shown to be responsible for defects in Ir-gene function and in Ia and MLR determinants. A comparison of the molecular size of the bm12 mutant and the parental B6 Ia-antigen component polypeptides failed to demonstrate any differences in the and polypeptides. Thus, no major structural additions or deletions are present in the Ia and chain polypeptide or carbohydrate structure. A significant decrease in the amount of invariant (31K) polypeptide was, however, consistently observed in the bm12 Ia antigen preparations. Tryptic peptide comparisons of 14C B6 and 3H bm 12 and polypeptides demonstrated a limited number of peptide differences in the bm12 polypeptide but none in the bm12 polypeptide. The significance of these biochemical mutations and altered biological phenomena are discussed in relation to a model of the immunological interaction sites on Ia antigens.  相似文献   

6.
Gene(s) at the I-A subregion of the murine major histocompatibility complex influence susceptibility to experimental autoimmune myasthenia gravis. C57Bl/6 mice immunized with acetylcholine receptors (AChR) in complete Freund's adjuvant demonstrated cellular and humoral immune responses to AChR. They developed muscle weakness characteristic of myasthenia gravis and demonstrated a reduction in the muscle AChR content. The kinetics of AChR-specific lymphocyte proliferation generally correlate with anti-AChR antibody response. AChR-specific lymphocyte proliferation was also observed in C57Bl/6 splenocytes after secondary immunization with AChR. The in vitro cellular reactivity to AChR in experimental autoimmune myasthenia gravis (EAMG) mice (C57Bl/6) was suppressed by monoclonal anti-I-Ab antibodies directed against private (Ia20) or public (Ia8) specificities, suggesting a critical role for these Ia determinants in the cellular immune response to AChR in murine EAMG.  相似文献   

7.
Two new C57BL/6H-2 mutants,B6.C-H- 2bm13 and B6.C-H- 2bm14 are described. They arose independently in C57BL/6 as spontaneous mutations of the gain and loss type. Complementation studies map the mutations in both bm13 and bm14 to theH-2D b gene. How ever, these two mutant strains are not identical, but occurred as independent mutations at the same locus, as shown by reciprocal graft rejection and by the inability of the (bm13 × bm114)F1 hybrid to accept C57BL/6 grafts. Serological studies by direct testing (cytotoxicity and hemagglutination) and by quantitative absorption demonstrated a decrease in the H-2Db private specificity H-2.2 in both bm13 and bm14 when compared to C57BL/6. This was confirmed by SDS-PAGE analysis using antisera detecting the H-2.2 specificity. Attempts to produce antibodies to either the gained or lost specificities of the two mutant strains failed.  相似文献   

8.
In an earlier paper, we presented evidence that two independent mutants of the bg series, B6-H-2 bm5 (bm5) and B6-H-2 bm16 (bm16) carry identical mutations such that tyrosine at residue number 116 of the H-2Kb molecule from the parent strain C57BL/6Kh is replaced by a phenylalanine in each of the two mutant molecules. In this paper, we demonstrate, using similar techniques, that the independent bg series mutants B6-H-2 bm6 (bm6), B6.C-H-2 bm7 (bm7), and B6.C-H-2 bm9 (bm9), which share biological properties with bm5 and bm16, can be grouped together because they share two identical mutations, one of which is common to bm5 and bm16, a Tyr to Phe interchange at residue number 116. In addition, a second mutation is at residue number 121, where a Cys in the H-2K molecule from 136 is substituted with an Arg in the mutant. Since all of the bg series mutants arose independently and share biological and biochemical characteristics, it is anticipated that study of these mutants could lead to some understanding of the high mutation rate in the Kb molecule.  相似文献   

9.
Susceptibility to experimental autoimmune myasthenia gravis (EAMG), which is induced in mice by injection of purified Torpedo nicotinic acetylcholine receptor (TAChR), is influenced by the I-A locus products, which restrict presentation of AChR Th epitopes. The bm12 mutation of the I-Ab molecule in the C57BL/6 strain, which is highly susceptible to EAMG, yields the EAMG resistant mutant B6.C-H-2bm12 (bm12). We investigated here the consequences of the bm 12 mutation on the CD4+ response to the TAChR alpha subunit. Upon immunization with TAChR, CD4+ cells became sensitized to TAChR and anti-AChR antibodies were produced in both bm12 and C57BL/6 strains. Overlapping synthetic peptides, corresponding to the complete sequence of TAChR alpha subunit, were used to identify Th epitopes. CD4+ cells from C57BL/6 mice recognized peptides T alpha 150-169, T alpha 181-200, and T alpha 360-378. CD4+ cells from bm12 mice did not respond to any synthetic sequence. Upon injection of the three C57BL/6 Th epitope peptides, either individually or as a pool, CD4+ cells from C57BL/6 mice recognized each peptide and TAChR. Therefore they recognized epitopes similar or identical to those originated from TAChR processing. CD4+ cells from bm12 mice injected with the same peptides responded to T alpha 360-378 strongly, to a lesser extent to T alpha 181-200, never to peptide T alpha 150-169. Only CD4+ cells sensitized against the T epitope peptide T alpha 181-200 responded to TAChR. We tested if lack of response to T alpha 150-169, and the low response to T alpha 181-200, was due to inability of the I-Abm12 molecule to present the T epitope peptides. bm12 and C57BL/6 APC were used to present the T epitope peptides to specifically sensitized CD4+ cells from C57BL/6 mice. All T epitope peptides were presented by bm12 APC, although T alpha 150-169 was presented less efficiently than by C57BL/6 APC. Resistance to EAMG induced by the bm12 mutation may be due to the change in the epitope repertoire of AChR-specific Th cells, and lack of recognition of otherwise immunodominant Th epitopes. For at least one epitope this might be due to absence of potentially reactive, specific CD4+ clones.  相似文献   

10.
Mice bearing the H-2 bhaplotype are susceptible to the development of experimental autoimmune myasthenia gravis (EAMG), induced by acetylcholine receptor (AChR) autoimmunity. One of the genes influencing EAMG susceptibility has been mapped to the A blocus of the major histocompatibility complex, and the A chain has been implicated in the pathogenesis. Mice of the H-2 bhaplotype, including C57BL/10 (B10), have a genomic deletion of the E gene and therefore fail to express the E molecule on their cell surface. To test the hypothesis that failure to express the cell surface E molecule in B10 mice contributes to EAMG pathogenesis, E inf supk transgenic B10 mice expressing the T molecule were examined. Expression of the E molecule in E inf supk transgenic B10 mice partially prevented the development of EAMG.  相似文献   

11.
A highly selected alloreactive T-cell line was developed by repeated restimulation of B10.D2/n lymph-node cells with irradiated C57BL/10Sn (BIO) spleen cells in long-term MLC for up to 2 1/2 years. Continuous growth of the line requires restimulation every 2 to 4 weeks with fresh H-2b stimulator cells. The line proliferates strongly against H-2b but not againstH-2 d ,H-2 f ,H-2 q ,H-2 r , orH-2 s stimulators. Analysis of recombinant mouse strains showed that the proliferative response is directed against I-Ab but not Kb or Db determinants. During the growth period of the line, strong cross-reactivity with H-2p (B10.P) and weak cross-reactivity with H-2k strains (e.g., CBA/J and B10.BR) was observed. A clone with exquisite specificity for I-Ab, but with no cross-reactivity with H-2p or H-2k was isolated from the line; thus clonal heterogeneity of the line still exists despite the highly selective growth conditions. — The majority of T cells from the line or clone were shown to bind I-Ab but not Kb or Db determinants either spontaneously during restimulation with fresh B10 stimulator cells or via membrane vesicles expressing I-Ab determinants. No killing activity by the line in either specific or nonspecific cytolytic T-cell assays was observed nor was the T 145 glycoprotein, characteristic of killer T cells, detected.Abbreviations used in this paper B6 C57BL/6J - B10 C57BL/10Sn - Con A Concanavalin A - CTL cytotoxic T lymphocyte - FCS fetal calf serum - FDA fluorescein diacetate - FITC fluorescein isothiocyanate - Ia I-region-associated antigens - LPS lipopolysaccharide fromE. coli - Lyt T-lymphocyte-defined antigen - MLC mixed leukocyte culture - NP-40 nonidet P-40 - PAGE pofyacrylamide gel electrophoresis - PHA phytohemagglutinin fromPhaseolus vulgaris - PM plasma membrane - SDS sodium dodecyl sulfate - TCGF T-cell growth factor(s) - TdR thymidine  相似文献   

12.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

13.
C57BL/6 (H-2 b ) mice, and four mutants (B6.C-H-2 ba , B6-H-2 bg1 , B6-H-2 bg2 , B6-H-2 bh ) derived from this strain after separate mutations had occurred at the same locus within theH-2 complex, were analyzed to determine whether the mutations had led to anyH-2 (or Ia) difference which could be detected serologically. The strains were typed directly with antisera specific for H-2K and H-2D public and private specificities and for the Ia specificities; quantitative absorption studies were also performed for the relevant H-2Kb, H-2Dd and Iab specificities. In no case was any quantitative or qualitative difference detected serologically between any of the strains. In addition, by using a variety of techniques to produce and assay for antibody, we failed to produce any antisera between the parental strains and the four mutants. TheH-2 mutations therefore appear to give rise to a type of antigenic specificity which is recognized byT cells and which generateT, but notB cell responses; nor are they recognized by H-2 or Ia alloantisera. The location of the mutating locus within theH-2 complex was shown by the complementation method to be within theK orIA region and not in theIB region, since crosses of the mutant strains with B10.A(4R) or D2.GD failed to complement for a subsequent C57BL/6 skin graft.  相似文献   

14.
The reactivity of H-2b-restricted murine T cells towards bovine insulin was reported to depend on the expression of Ia.W39, a private specificity of I-Ab, on antigen-presenting cells. Cells of male (CBA/N x B6)F1 mice carrying the mutation xid on the X chromosome lack Ia.W39 on the cell surface. These cells are unable to present bovine insulin to primed T cells derived from female (CBA/N x B6)F1 mice. We show here that spleen cells of male (CBA/N x B6)F1 hybrids served perfectly as accessory cells for the insulin-dependent induction of a proliferative response of long-term cultured T cells with (B10 x B10.BR)F1 genotype, restricted to recognizing insulin in the context of F1-unique I-A determinants. The epitope on the insulin molecule essential for stimulation was determined to depend on the glutamic acid residue in position 4 of the A chain of insulin. This contrasts with the H-2b-restricted response of B6 mice to bovine insulin, which appears to be directed at the A chain loop determinant (amino acids A8 and A10). These data suggest that distinct I-Ab-encoded structures, the expression of which is regulated independently, may serve as components of restriction elements for H-2b and (H-2b x H-2k)F1 restricted T cells, which are specific for different epitopes of bovine insulin.  相似文献   

15.
Hz1 (H-2 bm1 ) mice, an H-2 mutant strain derived from C57BL/6(H-2 b ), were either injected with vaccinia virus or had their spleen cells sensitized in vitro with syngeneic TNP-modified cells. The cytotoxic cells generated were tested for their activity against target cells that were either infected with vaccinia virus, TNP-modified, or both vaccinia infected and TNP-modified.Hz1 anti-TNP cytotoxic cells specifically lysed syngeneic target cells that were trinitrophenylated but not infected with vaccinia virus, while anti-vaccinia cells specifically lysed vaccinia infected target cells but not TNP-cells. Hz1 (H-2K bm1 D b ) anti-TNP effector cells killed B10.A(5R)-TNP (H-2K b D d ) targets, indicating that there is cross-reactivity between TNP-H-2Kb and TNP-H-2Kbm1. On the other hand, there is no cross-reactivity between vaccinia-H-2Kb and H-2Kbm1, since Hz1 anti-vaccinia effector cells did not kill vaccinia infected B10.A(5R) targets.Since Hz1 anti-TNP effector cells lysed B10.A(5R) target cells that were first infected with vaccinia virus and then derivatized with TNP, virus does not mask cross-reactive determinants shared by TNP-H-2Kb and H-2Kbm1. Additional experiments showed that Hz1 anti-TNP effector cells lysed TNP-modified and vaccinia infected B10.A(5R) target cells irrespective of the virus concentration used for infection or the time of addition of virus. Further, there are no detectable quantitative differences between C57BL/6 and Hz1 anti-TNP effector cells in their ability to kill TNP-5R targets.The cytotoxic effect of Hz1 anti-TNP effector cells on B10.A(5R)-TNP targets could not be blocked with TNP derivatized inhibitor cells that carry theH-2D d region allele. Thus, the ability of anti-TNP H-2Kb effector cells to cross-react with H-2Kbm1 cannot be explained by a cross-reaction between H-2Kbm1 and H-2Dd.Abbreviations used in this paper TNP trinitrophenol - PFU plaque forming unit - Con A Concanavalin A - BSS balanced-salt-solution - FCS fetal calf serum - TNBS trinitrobenzene sulfonic acid - PBS phosphate-buffered-saline  相似文献   

16.
Summary The acetylcholine receptor protein from human muscle was extracted with the non-ionic detergent Triton X-100 and purified by affinity chromatography on -Naja toxin sepharose 4B. Further purification on Dicap-MP sepharose 4B, a choline analog compound, led to ACHR preparations with specific activities of 2–7 nmol/mg protein. The isolated receptor, labeled with 125I--bungarotoxin was characterized by different methods and compared to ACHRs from Torpedo californica electroplax and rat-denervated skeletal muscle. Gel filtration on Ultrogel AcA 34 resulted in a stokes radius of 70 Å for the receptor monomer and 99 Å for the dimeric form. Sucrose density gradient centrifugation showed sedimentation coefficients of 9.1 S and 13.5 S. From these data the molecular weight of the ACHR monomer was estimated as 254 000 D and 540 000 D for the receptor dimer. The isoelectric point of the 125I--bgt-ACHR complex was determined by thin-layer isoelectric focussing to be pH 5.Purified ACHRs were used for immunization of rats and mice which developed an EAMG as verified by clinical observation and electrophysical measurements. Sera from the immunized animals as well as from myasthenia gravis patients were subsequently used to compare the cross-reactivity of ACHR preparations from different sources. While antibodies of rats immunized with Torpedo ACHRs cross-reacted with ACHR preparations from rat and human skeletal muscle, antibodies from mice immunized with rat ACHR only reacted with preparations from rats and mice. Antibodies from mice immunized with ACHR of human origin exhibited a broad cross-reactivity, as did antibodies from MG patients.Abbreviations AB antibody - ACHR nicotinic acetylcholine receptor - BSA bovine serum albumin - Dicap-MP methyl-[N-(6-aminocaproyl-6aminocaproyl)-3-amino]pyridinbromide - EAMG experimental autoimmune myasthenia gravis - EDTA ethylenediaminetetraaceticacid - MG myasthenia gravis - PMSF phenylmethylsulfonylfluoride Recipient of a postdoctoral grant from Deutsche Forschungsgemeinschaft; present address: Neurologische Klinik, Medizinische Einrichtungen der Universität Düsseldorf.  相似文献   

17.
The relationship betweenIr genes and Ia antigens was studied in the T-cell proliferative responses to two synthetic polypeptides poly(glu40ala60) (GA) and poly(glu51lys34tyr15) (GLT15). The response to GA was found to be controlled by anIr gene in theI-A subregion, whereas the anti-GLT15 response was shown to be under dual control, oneIr gene mapping probably in theI-A subregion, and the other in theI-E subregion. We obtained two different lines of evidence suggesting identity ofIr and Ia genes. First, the presence of certain serologically identified allelic forms of the I-A-encoded A molecule correlated with the responder status to GA both in inbred strains and in B10.W lines, the latter carrying wild-derivedH-2 haplotypes. Thus the Ir and Ia phenotypes were not separable in strains of independent origin. Second, the anti-GA response was completely inhibited by monoclonal antibodies against determinants on the A molecule (Ia.8, 15, and 19), but not by a monoclonal antibody against a determinant on the E molecule (Ia.7). In contrast, the anti-GLT15 response was only inhibited by a monoclonal antibody against the E molecule, but not by antibodies against the A molecule. Our data support the hypothesis that Ia antigens, as restriction elements for T-cell recognition, may in fact be the phenotypic manifestation ofIr genes.  相似文献   

18.
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.  相似文献   

19.
Footpad swelling response was used to measure the alloantigenicity of epidermal cells (ECs) in delayed-type hypersensitivity (DTH). Strong footpad swelling was oberserved 3 h after the challenge, and it continued for 48 h after the challenge. Genetical incompatibility between the recipients and the ECs was required to induce significant footpad swelling. H-2 or non-H-2 incompatibility between mice and ECs in the sensitization phase sufficed to develop significant footpad swelling. Incompatibility caused by point mutation in the A region induced strong responses when B6. C-H-2 bm12 mice were immunized with B6/J ECs, but the disparity in immuno-globulin h (Igh) allotype genes was insufficient. H -Y antigen on ECs could also elicit the DTH response. Semiallogeneic F1-derived ECs sensitized the parental recipients. The responses were successfully transferred by immune lymph node cells, but not by immune sera. Treatment of these immune lymph node cells with monoclonal antibodies plus complement revealed that the cells responsible for DTH transfer were Lyt-1+2, Ia T cells.Abbreviations used in this paper DNFB 2,4-dinitro-1-fluorobenzene - DTH delayed-type hypersensitivity - ECs epidermal cells - HBSS Hanks' balanced salt solution - MHC major histocompatibility complex - PBS phosphate-buffered saline  相似文献   

20.
The H-2L d allele has been identified by others as the sole Ir gene in the H-2 d haplotype for the cytotoxic T lymphocyte (CTL) response to mouse lymphocytic choriomeningitis virus (LCMV). The BALB/c-H-2 dm2 (C-H-2 dm2 ) mutant lacks H-2L d , and thus should be ideal for assessing the contribution of virus-immune CTL to LCM immunopathology. Comparison of the C-H-2 dm2 mice with congenic BALB/c mice revealed that there is a delay of about 24 h in the onset of severe inflammatory process and symptoms in the mutant strain, but the absence of H-2L d did not prevent the later development of fatal disease in mice injected intracerebrally (i.e.) with neurotropic LCMV. This could indicate that virus-immune CTL are not the major mediators of clinical LCM. Spleen cells from LCMV-primed BALB/c mice did not show CTL activity for LCMV-infected C3H.OH, C-H-2 dm2 , or (CBA × C-H-2 dm2 )F1 target cells. However, immune lymphocytes from both the mutant and the F1 strains lyse virus-infected BALB/c cells. Furthermore, BtO.HTG and, in some experiments, B10.A(5R) mice generated CTL lytic for LCMV-infected BALB/c, C-H-2 dm2 , and (CBA × CH-2 dm2 )F1 macrophages. Apparently H-2L d is immunodominant in the H-2d restricted response to LCMV. However, in the absence of H-2L d , it seems that H-2K d and, to a lesser extent, H-2D d also serve as Ir genes for the CTL response in this infection. Even so, the absence of the H-2Ld-restricting element results in a disease process which is either delayed in onset or less severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号