首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

2.
In isolated superior mesenteric artery rings from age-matched control rats and streptozotocin (STZ)-induced diabetic rats, we investigated the role of cAMP in endothelium-derived hyperpolarizing factor (EDHF)-type relaxation. The ACh-induced EDHF-type relaxation was significantly weaker in STZ-induced diabetic rats than in control rats, and in both groups of rats it was attenuated by 18alpha-glycyrrhetinic acid (18alpha-GA), an inhibitor of gap junctions, and enhanced by IBMX, a cAMP-phosphodiesterase (PDE) inhibitor. These enhanced EDHF-type responses were very similar in magnitude between diabetic and age-matched control rats. The EDHF-type relaxation was enhanced by cilostamide, a PDE3-selective inhibitor, but not by Ro 20-1724, a PDE4-selective inhibitor. The expression levels of the mRNAs and proteins for two cAMP PDEs (PDE3A, PDE3B) were significantly increased in STZ-induced diabetic rats, but those for PDE4D were not. We conclude that the impairment of EDHF-type relaxations in STZ-induced diabetic rats may be attributed to a reduction in the action of cAMP via increased PDE activity.  相似文献   

3.
Effects of Ro 20-1724, a selective inhibitor of soluble cGMP-insensitive type IV phosphodiesterase, on the force and cAMP levels were compared with those of 3-isobutyl-1-methylaxanthine, a non-selective inhibitor, in the rat ventricular myocardium. Ro 20-1724 scarcely affected the basal force of contraction and cAMP levels, whereas it enhanced the positive intropic effect and cAMP accumulation induced by isoproterenol more effectively than 3-isobutyl-1-methylxanthine. These results imply that inhibition of the soluble cGMP-insensitive type IV PDE by Ro 20-1724 may be crucially involved in the regulation of myocardial contractility through the interaction with cAMP generation in the rat ventricular myocardium.  相似文献   

4.
We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A. M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M. D. [1996]Cell. Signalling 8, 97–110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorobol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA-and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies “crosstalk” occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells.  相似文献   

5.
We investigated the effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type 4 inhibitors and of the cell permeable analogue of cAMP, db-cAMP on LPS-induced TNF-alpha release from human mononuclear cells. Incubation from 30 min of mononuclear cells with dbcAMP (10(-5) to 10(-3) M), rolipram (10(-9) M to 10(-5) M) or Ro 20-1724 (10(-9) M to 10(-5) M) significantly inhibited LPS-induced TNF-alpha release. When mononuclear cells were preincubated for 30 min with the selective PKA inhibitor, H89 (10(-4) M), but not with the selective PKG inhibitor, Rp-8-pCPT-cGMPs (10(-4) M), a significant reduction of the inhibitory effect of db-cAMP was noted. Thirty min incubation of mononuclear cells with Rp-8-pCPT-cGMPs induced a significant reduction of the inhibitory activities of both rolipram and Ro 20-1724 (10(-9) to 10(-5) M) on LPS-induced TNF-alpha release, whereas H89 elicited a moderate, but significant inhibition. The present data indicate that db-cAMP inhibits TNF-alpha release from human mononuclear cells through a PKA-dependent mechanism. In contrast, PDE 4 inhibitors elicit their in vitro anti-inflammatory activities via a PKG-dependent rather than PKA-dependent activation.  相似文献   

6.
Several compounds have been tested for their activity as inhibitors of 3′,5′-nucleotide phosphodiesterase in brain cortical slices from guinea pig. SQ 20,009 (1-ethyl-4-isopropylidenehydrazino)-1H-pyrazolo (3,4-b)pyridine-5-carboxylate, ethylester, hydrochloride), a very potent inhibitor of 3′,5′-nucleotide phosphodiesterase from rat and rabbit brain shows only moderate activity as 3′,5′-nucleotide phosphodiesterase inhibitor when tested in brain slices. It enhances cyclic AMP accumulation only when slices are stimulated by histamine. It does not affect cyclic AMP levels when histamine/norepinephrine are used as stimuli of cyclic AMP formation and decreases the activity of adenosine as stimulant slightly. Ro 20–1724 (4-(3-butoxy-4-methoxy)-2-imidazolidinone) a potent inhibitor of canine cerebral cortex PDE activity effectively augments the increase in cyclic AMP under all stimulating conditions mentioned, as does to a somewhat smaller extent the more water soluble Ro 20–2926 (4-(3-ethoxy-ethoxy-4-methoxy)-2-imidazolidinone). Dose-response curves for Ro 20–1724 under three stimulating conditions of increased cyclic AMP formation (0.1 mm histamine, 0.1 mm histamine/0.1 mm norepinephrine, 0.1 mm adenosine) yield an ED50 of about 20 μm in all instances. A significant increase over respective controls is seen even at 1 μm Ro 20–1724 (histamine/norepinephrine). The drugs may be useful as tools for studying the regulation of cyclic AMP levels in the central nervous system.  相似文献   

7.
《Cellular signalling》2014,26(5):1001-1010
Activation of the cyclic AMP (cAMP) pathway reduces bladder contractility. However, the role of phosphodiesterase (PDE) families in regulating this function is poorly understood. Here, we compared the contractile function of the cAMP hydrolyzing PDEs in neonatal rat bladder smooth myocytes. RT-PCR and Western blotting analysis revealed that several isoforms of PDE1–4 were expressed in neonatal rat bladder. While 8-methoxymethyl-3-isobutyl-1-methylxanthine (a PDE1 inhibitor) and BAY-60-7550 (a PDE2 inhibitor) had no effect on the carbachol-enhanced phasic contractions of bladder strips, cilostamide (Cil, a PDE3 inhibitor) and Ro-20-1724 (Ro, a PDE4 inhibitor) significantly reduced these contractions. This inhibitory effect of Ro was blunted by the PKA inhibitor H-89, while the inhibitory effect of Cil was strongly attenuated by the PKG inhibitor KT 5823. Application of Ro in single bladder smooth myocytes resulted in an increase in Ca2 + spark frequency but a decrease both in Ca2 + transients and in sarcoplasmic reticulum (SR) Ca2 + content. In contrast, Cil had no effect on these events. Furthermore, Ro-induced inhibition of the phasic contractions was significantly blocked by ryanodine and iberiotoxin. Taken together, PDE3 and PDE4 are the main PDE isoforms in maintaining the phasic contractions of bladder smooth myocytes, with PDE4 being functionally more active than PDE3. However, their roles are mediated through different mechanisms.  相似文献   

8.
Abstract: Prolonged activation of an A2A adenosine receptor significantly inhibits the cellular response to subsequent stimulation (A2A desensitization). We have reported previously that activation of phosphodiesterase (PDE) contributes to A2A desensitization in PC12 cells. In the present study, we show that a type IV PDE (PDE4)-selective inhibitor (Ro 20-1724) effectively blocks the increase in PDE activity in desensitized cells. Thus, PDE4 appears to be the PDE specifically activated during A2A desensitization in PC12 cells. Prolonged treatment of PC12 cells with an A2A-selective agonist (CGS21680) leads to increased PDE4 activity in a dose-dependent manner, which can be blocked by an A2A-selective antagonist [8-(3-chlorostyryl)caffeine]. Using two PDE4 antibodies, we were able to demonstrate that the levels of two PDE4-immunoreactive bands (72 and 79 kDa) were increased significantly during A2A desensitization. Prolonged treatment with forskolin to elevate intracellular cyclic AMP contents also resulted in increased PDE4 activity. In addition, activation of PDE4 activity during A2A desensitization could be blocked by a protein kinase A (PKA)-selective inhibitor (H89) and was not observed in a PKA-deficient PC12 cell line (A123). Taken together, activation of PDE4 via a cyclic AMP/PKA-dependent pathway plays a critical role in dampening the signal of the A2A receptor.  相似文献   

9.
Studies by various investigators have demonstrated that the low Km, cAMP-specific phosphodiesterase (PDE IV) is selectively inhibited by a group of compounds typified by rolipram and Ro 20-1724. In addition to inhibiting the catalytic activity of PDE IV, rolipram binds to a high affinity binding site present in brain homogenates. Although it has been assumed that the high affinity rolipram-binding site is PDE IV, no direct evidence has been produced to support this assumption. The present studies were undertaken to determine whether the rolipram-binding site is coexpressed with PDE IV catalytic activity in Saccharomyces cerevisiae genetically engineered to express human recombinant monocytic PDE IV (hPDE IV). Expressing hPDE IV cDNA in yeast resulted in a 20-fold increase in PDE activity that was evident within 1 h of induction and reached a maximum by 3-6 h. The recombinant protein represented hPDE IV as judged by its immunoreactivity, molecular mass (approximately 88 kDa), kinetic characteristics (cAMP Km = 3.1 microM; cGMP Km greater than 100 microM), sensitivity to rolipram (Ki = 0.06 microM), and insensitivity to siguazodan (PDE III inhibitor) and zaprinast (PDE V inhibitor). Saturable, high affinity [3H] (R)-rolipram-binding sites (Kd = 1.0 nM) were coexpressed with PDE activity, indicating that both binding activity and catalytic activity are properties of the same protein. A limited number of compounds were tested for their ability to inhibit hPDE IV catalytic activity and compete for [3H](R)-rolipram binding. Analysis of the data revealed little correlation (r2 = 0.35) in the structure-activity relationships for hPDE IV inhibition versus competition for [3H] (R)-rolipram binding. In fact, certain compounds (e.g. (R)-rolipram Ro 20-1724) possessed a 10-100-fold selectivity for inhibition of [3H] (R)-rolipram binding over hPDE IV inhibition, whereas others (e.g. dipyridamole, trequinsin) possessed a 10-fold selectivity for PDE inhibition. Thus, although the results of these studies demonstrate that hPDE IV activity and high affinity [3H](R)-rolipram binding are properties of the same protein, they do not provide clear cut evidence linking the binding site with the PDE inhibitory activity of rolipram and related compounds.  相似文献   

10.
Differentiation of 3T3-L1 adipocytes, monitored by accumulation of neutral lipid and by increase in alpha-glycerophosphate dehydrogenase activity, is accelerated by incubation of confluent 3T3-L1 fibroblasts in media containing insulin, dexamethasone and isobutylmethylxantine (IBMX). IBMX inhibits cyclic nucleotide phosphodiesterases as well as the binding of adenosine to its receptor. Agents with relatively specific effects were utilized to examine the role of IBMX in differentiation. Ro 20-1724, a selective inhibitor of soluble cAMP phosphodiesterase activities, was as effective as IBMX in increasing alpha-glycerophosphate dehydrogenase activity and fat deposition. Neither cilostamide, which inhibits particulate but not soluble cAMP phosphodiesterase activities, 8-phenyltheophylline, an adenosine receptor antagonist with little inhibitory effect on phosphodiesterase activities, nor N6-(R phenyl-isopropyl) adenosine (PIA), a potent adenosine receptor agonist, were effective in promoting differentiation. In addition, we find that maximal increases in alpha-glycerophosphate dehydrogenase activity and lipid accumulation were observed when differentiation was initiated in the presence of 10 nM dexamethasone. These data suggest that inhibition of soluble cAMP phosphodiesterase activity and subsequent alterations in cAMP may play an important role in the mechanism whereby IBMX enhances differentiation of 3T3-L1 cells.  相似文献   

11.
Three phosphodiesterase (PDE) type III inhibitors were tested and found to inhibit Xenopus oocyte maturation induced by insulin with apparent IC50 values of 2.2 +/- 0.2 microM Cl-930, 25 +/- 3 microM imazodan (Cl-914), and 786 +/- 237 microM piroximone (MDL 19,205). The same rank order of potencies was observed for inhibition of insulin-like growth factor-I (IGF-I)-induced oocyte maturation, with IC50 values of 5.5 +/- 0.9 microM Cl-930, 54 +/- 4 microM imazodan, and 1190 +/- 395 microM piroximone. Oocyte maturation induced by microinjection of Ha p21ras was also inhibited by pretreatment of oocytes with Cl-930 or imazodan, with IC50 values of 4.3 +/- 1.2 and 59 +/- 4 microM, respectively. Progesterone-induced maturation was not affected by PDE III inhibitor action; and, neither type IV PDE inhibitors (Ro 20, 1724 or rolipram) nor dipyridamole (a type V PDE inhibitor) inhibited cell division induced by IGF-I or microinjected Ha p21ras. In addition, while insulin-stimulated oocyte PDE activity measured in vivo after microinjection of 200 microM [3H] cAMP was inhibited by nonselective and type III-specific drugs (with IC50 values of 4.2 +/- 1.8 microM Cl-930 and 26 +/- 6 microM imazodan), type IV and type V inhibitors did not inhibit hormone-stimulated enzyme activity. This pharmacological evidence demonstrates a necessary role for PDE III in insulin-, IGF-I-, and p21ras-induced meiotic cell division in Xenopus laevis oocytes.  相似文献   

12.
The transient increase in human neutrophil cAMP levels induced by the chemoattractant N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) is shown to be caused by amplification of adenylate cyclase response to endogenously produced adenosine. The FMLP-stimulated increase in neutrophil cAMP was potentiated markedly by a nonmethylxanthine cAMP phosphodiesterase inhibitor (Ro 20-1724). By inhibiting the degradation of newly formed cAMP, Ro 20-1724 rendered the FMLP-induced cAMP elevation persistent rather than transient. The role of endogenously produced adenosine in this phenomenon is demonstrated by the ability of either adenosine deaminase or theophylline, an adenosine receptor antagonist, to prevent FMLP-stimulated cAMP elevation. The general nature of the FMLP-potentiated cAMP response is indicated by the finding that FMLP-treated neutrophils, in the presence of exogenously supplied adenosine deaminase, exhibited augmented cAMP generation in response to three different types of receptor agonists: 2-chloroadenosine, prostaglandin E1, and L-isoproterenol. Moreover, like the neutrophil cAMP increase caused by FMLP alone, the ability of FMLP to augment cAMP response to 2-chloroadenosine in adenosine deaminase-treated cells was short-lived and declined after 1.0 min of exposure to FMLP. Preincubation of neutrophil suspensions with the adenylate cyclase inhibitor SQ 22,536 completely prevented FMLP-induced cAMP generation. Furthermore, when neutrophil suspensions were preincubated with concentrations of Ro 20-1724, which apparently maximally inhibit cAMP phosphodiesterase, a 30-s incubation with FMLP still resulted in substantially elevated cAMP levels. It therefore appears that FMLP raises cAMP by activating adenylate cyclase rather than inhibiting cAMP phosphodiesterase.  相似文献   

13.
Four cyclic nucleotide phosphodiesterase (PDE) activities were separated from low-speed supernatants of homogenates of human cardiac ventricle by DEAE-Sepharose chromatography, and designated PDE I-PDE IV in order of elution with an increasing salt gradient. PDE I was a Ca2+/calmodulin-stimulated activity, and PDE II was an activity with a high Km for cyclic AMP which was stimulated by low concentrations of cyclic GMP. Human ventricle PDE III had Km values of 0.14 microM (cyclic AMP) and 4 microM (cyclic GMP), and showed simple Michaelis-Menten kinetics with both substrates. PDE IV is a previously unrecognized activity in cardiac muscle, the human enzyme having Km values of 2 microM (cyclic AMP) and 50 microM (cyclic GMP). PDE III and PDE IV were not activated by cyclic nucleotides or calmodulin. Four PDE activities were also isolated from guinea-pig ventricle, and had very similar kinetic properties. By gel filtration, the Mr of PDE III was 60,000, and that of PDE IV 45,000. The drug SK&F 94120 selectively and competitively inhibited PDE III with a Ki value of 0.8 microM (human), showing simple hyperbolic inhibition kinetics. Rolipram (Schering ZK 62711) and Ro 20-1724 (Roche), which have previously been reported to inhibit PDE III-like activities strongly, were shown to be weak inhibitors of human and guinea-pig PDE III enzymes (Ki values greater than 25 microM), but potent inhibitors of PDE IV [Ki values 2.4 microM (Rolipram) and 3.1 microM (Ro 20-1724) with human PDE IV]. The inhibition in all cases demonstrated simple hyperbolic competition. These observations suggest that the previously reported complex inhibition of PDE III-type activities from cardiac muscle was caused by incomplete separation of the PDE III from other enzymes, particularly PDE IV.  相似文献   

14.
Insulin antagonized the lipolytic actions of epinephrine in rat epididymal adipocytes when the phosphodiesterase inhibitor, Ro 20-1724, was present. Adipocytes were depleted of functional cAMP by inhibiting adenylate cyclase with N6-phenylisopropyladenosine in the presence of adenosine deaminase such that Ro 20-1724 no longer stimulated lipolysis. The cAMP analogs 8-thioisopropyl-cAMP or 8-thiomethyl-cAMP, which are resistant to phosphodiesterase hydrolysis, were subsequently added to bypass adenylate cyclase and phosphodiesterase action. Under these conditions, insulin antagonized the lipolytic effects of these analogs, even in the presence of Ro 20-1724.  相似文献   

15.
In order to study potential changes in phosphodiesterase (PDE) activity associated with malignant transformation, normal primary keratinocytes and cells corresponding to different stages of epidermal tumor development in mouse skin were analyzed with respect to their 3′,5′-cyclic adenosine monophosphate (cAMP) hydrolyzing activity. Expression of cAMP-specific PDE-4, intracellular cAMP content, and the sensitivity to the growth inhibitory effect of the PDE-4-specific inhibitor 7-benzylamino-6-chloro-2 piperazino-4-pyrrolidino-pteridine (DC-TA-46) were studied in the two papilloma cell lines, MSCP6 and 308, and in the highly malignant carcinoma cell line CarB. No significant difference in soluble PDE activity and in intracellular cAMP was found in the two papilloma cell lines when compared to primary keratinocytes. In contrast, the spindle-cell carcinoma cell line CarB exhibited significantly higher PDE activity, concomitant with the lowest cAMP level. In all cell lines and also in the primary keratinocytes, rolipram-sensitive PDE-4 activity accounted for the major cAMP-hydrolyzing activity. In primary keratinocytes and in MSCP6 cells, the PDE-4 inhibitor DC-TA-46 induced at best marginal growth inhibition, whereas cell growth of 308 cells was markedly affected at concentrations >2 μM. The carcinoma cell line CarB showed the highest sensitivity to DC-TA-46 (IC50=0.8±0.3 μM). Treatment of CarB cells with DC-TA-46 strongly inhibits intracellular PDE activity, resulting in a marked and long-lasting rise of cAMP. After 24 h of treatment, arrest in the G0/G1 phase of the cell cycle is induced. Treatment with concentrations >2 μM of this highly effective PDE inhibitor results in induction of apoptotic cell death, as detected by fluorescence microscopy, flow cytometry, and ELISA-based determination of fragmented DNA in intact cells.  相似文献   

16.
There are phosphodiesterase activities in both particulate and supernatant fractions which hydrolyze guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) with an apparent Km of 2-8 muM and with an apparent Km of 44-222 muM. 4-(3-Butoxy-4-methoxybenzyl-2-imidazolidinone (RO20-1724) did not inhibit cGMP phosphodiesterase activity in homogenates of mouse neuroblastoma cells, but markedly inhibited cAMP phosphodiesterase activity. Papaverine and theophylline inhibited both cGMP and cAMP phosphodiesterase activities to about the same extent. The former was more potent than the latter. The specific activity of cGMP phosphodiesterase as a function of protein concentrations first increased and then decreased. The specific activity of cAMP phosphodiesterase decreased under a similar experimental condition.  相似文献   

17.
We have demonstrated that confluent monolayers of the mouse fibroblast cell line C3H/10T1/2 (10T1/2) have the ability to cause reversible growth inhibition of cocultured transformed cells. This was first demonstrated for de novo transformed cells and later extended to established cell lines of proven oncogenicity in vivo. This growth inhibition could be increased by growing the 10T1/2 cells to high density in increasing concentrations of serum or by elevating intracellular concentrations of cAMP using inhibitors of phosphodiesterase (PDE). These manipulations, which in cocultures of nontransformed and transformed cells caused complete inhibition of tumor cell growth, had no effect on growth rate or saturation density of either ceil type when cultured alone, demonstrating the cooperative nature of this phenomenon. This cooperation could not be produced by transfer of culture medium, demonstrating the requirement for intimate cell contact. Inhibition of the formation of transformed foci of cells in these mixed cultures was accompanied by a decrease in the incorporation of labeled thymidine into these cultures; the kinetics of this inhibition and recovery suggested a rapidly reversible effect on cell cycle transit times. The potent inhibitor of cAMP PDE, Ro 20-1724 induced dose dependent increases in intracellular cAMP in both nontransformed and in transformed cells. However, at a concentration of 10?4 M Ro 20-1724, which inhibited tumor cell growth in mixed cultures, cAMP was elevated 30-fold in nontransformed versus only 3-fold in transformed cells. The inhibitory effects of PDE inhibitors on tumor growth have been extended to an in vivo model system, utilizing Lewis lung carcinoma cells growing as metastases in the lungs of C57B1 mice. In these mice, inoculated intravenously with a single cell suspension of Lewis lung cells, the formation of lung metastases was dramatically decreased by the twice daily administration of either isobutylmethylxanthine or Ro 20-1724; PDE inhibitors were shown to be active in vitro. The latter compound, which showed highest activity in vitro, was also substantially more potent in vivo as an inhibitor of lung tumor colony formation and doubled the life span of the tumor bearing animals. Cell cycle analysis of lung tumor colonies by the labeled mitosis method showed that both phosphodiesterase inhibitors caused a prolonged G1 phase in the cell cycle but failed to influence other phases. Although detailed analysis of host tissues is not complete, prolonged treatment with these drugs caused no statistically significant weight loss or changes in counts of red or white blood cells indicating a selective growth inhibition of transformed cells at these doses. Studies to determine the mechanism of the cellular communication and the nature of the signal are in progress.  相似文献   

18.
It was previously demonstrated that inhibition of cAMP degradation with phosphodiesterase type 3 (PDE3) inhibitors resulted in the maintenance of bovine cumulus–oocyte complexes (COC) and denuded oocytes (DO) in meiotic arrest, while a PDE4 inhibitor was without effect. In this study, different inhibitors of PDE3 and PDE4 were tested for their effects on bovine oocyte nuclear maturation. Bovine COC and DO were cultured in TCM-199+10% fetal bovine serum (FBS) with or without different concentrations of the PDE inhibitors. The PDE3 inhibitor trequinsin significantly increased the percentage of COC remaining at the germinal vesicle (GV) stage after 7 h of culture (19.3, 60.3, and 67.8% GV for control and trequinsin 10 and 50 nM, respectively) while Ro 20-1724 (a PDE4 inhibitor) was without effect. In DO, only trequinsin at 10 nM had a significant effect after 7 h of culture (51.3 and 86.1% GV for control and trequinsin 10 nM, respectively). Trequinsin reduced the percentage of COC reaching the mature phase after 22 h, but was without effect on DO. The protein kinase A (PKA) inhibitor H-89 reversed the inhibitory effect of trequinsin in COC and DO, indicating that inhibition of nuclear maturation by trequinsin involves activation of PKA. Trequinsin increased cAMP concentrations in COC but not in DO, suggesting that cumulus cells may also contain a PDE3 isoenzyme.  相似文献   

19.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

20.
The increase in cellular cAMP concentration during 10-min incubation of rat hepatocytes with glucagon or forskolin was enhanced markedly when the hepatocytes had been cultured for several hours with herbimycin A. This effect of herbimycin was accompanied by inhibition of tyrosine-phosphorylation of cellular proteins including alpha-tubulin, antagonized by coaddition of Na3VO4 plus H2O2, which also antagonized the herbimycin-induced tyrosine phosphorylation, and overcome by the addition to the 10-min incubation medium of a certain inhibitor of cAMP phosphodiesterase (PDE), which caused a huge accumulation of cAMP. The effective PDE inhibitors were 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone (rolipram) and 4-(3-butyloxy-4-methoxyphenyl)-2-imidazolidinone (Ro-20-1724, a PDE4 inhibitor), in addition to 3-isobutyl-1-methylxanthine (a nonselective inhibitor). Rapid breakdown of the once-accumulated cAMP in cultured hepatocytes during the subsequent incubation without PDE inhibitors was progressively prevented when the concentration of herbimycin was increased from 0.3 to 10 microM during prior culture. This effect of herbimycin to inhibit PDE activity in intact cells was abolished by coaddition of a microtubule-disrupting agent, either colchicine or vinblastine, into the culture, but remained unchanged if the vinblastine-containing medium was further supplemented with taxol, a microtubule-stabilizing agent, which by itself mimicked the effect of herbimycin. None of these agents, which thus affected PDE activity in intact cells, inhibited the PDE activity assayable in the cell lysates. The taxol-like and vinblastine-suppressible action of herbimycin to stimulate microtubular assembly was antagonized by Na3VO4/H2O2, as confirmed by confocal microscopic images of the cells stained with fluorescein-bound anti-(alpha-tubulin). Thus, 4-h culture of hepatocytes with herbimycin inhibits phosphorylation of the C-terminal tyrosine residue of alpha-tubulin, thereby stimulating formation of a microtubular network which is responsible for the inhibition of PDE4 in the intact cells by an unknown mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号