首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shape and integrity of fungal cells is dependent on the skeletal polysaccharides in their cell walls of which beta(1,3)-glucan and chitin are of principle importance. The human pathogenic fungus Candida albicans has four genes, CHS1, CHS2, CHS3 and CHS8, which encode chitin synthase isoenzymes with different biochemical properties and physiological functions. Analysis of the morphology of chitin in cell wall ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that comprised the bulk of the cell wall; and a network of longer interlaced microfibrils in the bud scars and primary septa. Analysis of chitin ghosts of chs mutant strains by shadow-cast transmission electron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-chitin rodlets were absent in chs3 mutants. The inferred site of chitin microfibril synthesis of these Chs enzymes was corroborated by their localization determined in Chsp-YFP-expressing strains. These results suggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rodlets at the same cellular location. Therefore the architecture of the chitin skeleton of C. albicans is shaped by the action of more than one chitin synthase at the site of cell wall synthesis.  相似文献   

2.
Chitosan, a derivative of chitin, is a natural component of some fungus cell walls. It is formed by the complex action of chitin synthase and chitin deacetylase. The in vitro activity of these two enzymes is known to be influenced by several factors. We investigated the influence of ferrous ions, manganese ions, cobalt ions, trypsin, and chitin, as individual supplements to the nutrient medium, on the in vivo activity of chitin synthase and chitin deacetylase to form chitosan in the fungus Absidia orchidis. Manganese and ferrous ions gave the most significant results. These ions increase chitosan yields through an increase in biomass production rather than an increase of chitosan content in cell walls. Manganese and ferrous ions lowered the activity of chitin deacetylase; however, their influence on the activity of chitin synthase was more complex. The effects of trypsin and chitin on biomass and cell wall chitosan content were negligible, while cobalt ions completely inhibited the growth of fungi.  相似文献   

3.
A new myosin motor-like chitin synthase gene, chsVb, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Phylogenetic analysis of the deduced amino acid sequence of the chsVb chitin synthase 2 domain (CS2) revealed that ChsVb belongs to class VII chitin synthases. The ChsVb myosin motor-like domain (MMD) is shorter than the MMD of class V chitin synthases and does not contain typical ATP-binding motifs. Targeted disrupted single (DeltachsVb) and double (DeltachsV DeltachsVb) mutants were unable to infect and colonize tomato plants or grow invasively on tomato fruit tissue. These strains were hypersensitive to compounds that interfere with fungal cell wall assembly, produced lemon-like shaped conidia, and showed swollen balloon-like structures in hyphal subapical regions, thickened walls, aberrant septa, and intrahyphal hyphae. Our results suggest that the chsVb gene is likely to function in polarized growth and confirm the critical importance of cell wall integrity in the complex infection process of this fungus.  相似文献   

4.
Benjaminiella poitrasii is a zygomycetous, non-pathogenic dimorphic fungus. Chitin synthases are the membrane bound enzymes involved in the synthesis of chitin and are key enzymes in the cell wall metabolism. Multiplicity of these enzymes is a common occurrence. Here, we identify eight distinct CHS genes in B. poitrasii as confirmed through DNA sequence and Southern analysis. These genes are related to other fungal CHS genes. BpCHS1-4 are class I-III chitin synthases while BpCHS5-8 are class IV-V chitin synthases. These eight genes are differentially expressed during morphogenesis and under different growth conditions. Two of these genes viz. BpCHS2 and BpCHS3 appear to be specific to the mycelial growth form. These are the first B. poitrasii sequences to be reported. Based on CHS gene sequences, B. poitrasii chitin synthase genes place it with other zygomycetes on a fungal phylogenetic tree.  相似文献   

5.
唐斌  王世贵  张文庆 《昆虫学报》2009,52(7):736-742
几丁质不仅是昆虫的表皮和围食膜的主要成分,也是一个非常关键的害虫控制靶标,主要通过几丁质合成酶(chitin synthase,CHS)基因合成。本文在克隆甜菜夜蛾Spodoptera exigua的两个几丁质合成酶基因(SeCHSA和SeCHSB)cDNA和基因组序列的基础上,从基因的5′末端设计特异性引物和构建特定的基因组文库, 采用PCR的方法获得了5′端侧翼序列。通过5′RACE的方法确定SeCHSA和SeCHSB基因的转录起始位点后,获到了启动子序列。这为研究昆虫几丁质合成和转录调控奠定了基础。  相似文献   

6.
7.
Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via alpha(1-3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow ina mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall.  相似文献   

8.
Wangiella (Exophiala) dermatitidis is a polymorphic fungus that produces polarized yeast and hyphae, as well as a number of non-polarized sclerotic morphotypes. The phenotypic malleability of this agent of human phaeohyphomycosis allows detailed study of its biology, virulence and the regulatory mechanisms responsible for the transitions among the morphotypes. Our prior studies have demonstrated the existence of seven chitin synthase structural genes in W. dermatitidis, each of which encodes an isoenzyme of a different class. Among them, the class V chitin synthase (WdChs5p) is most unique in terms of protein structure, because it has an N-terminal myosin motor-like domain with a P-loop (MMD) fused to its C-terminal chitin synthase catalytic domain (CSCD). However, the exact role played by WdChs5p in the different morphotypes remains undefined beyond the knowledge that it is the only single chitin synthase required for sustained cell growth at 37 degrees C and consequently virulence. This report describes the expression in Escherichia coli of a 12kDa polypeptide (WdMyo12p) of WdChs5p, which was used to raise in rabbits a polyclonal antibody that recognized exclusively its MMD region. Results from the use of the antibody in immunocytolocalization studies supported our previous findings that WdChs5p is critically important at infection temperatures for maintaining the cell wall integrity of developing yeast buds, elongating tips of hyphae, and random sites of expansion in sclerotic forms. The results also suggested that WdChs5p localizes to the regions of cell wall growth in an actin-dependent fashion.  相似文献   

9.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   

10.
11.
Chitin is an essential component of fungal cell walls, where it forms a crystalline scaffold, and chitooligosaccharides derived from it are signaling molecules recognized by the hosts of pathogenic fungi. Oomycetes are cellulosic fungus-like microorganisms which most often lack chitin in their cell walls. Here we present the first study of the cell wall of the oomycete Aphanomyces euteiches, a major parasite of legume plants. Biochemical analyses demonstrated the presence of ca. 10% N-acetyl-D-glucosamine (GlcNAc) in the cell wall. Further characterization of the GlcNAc-containing material revealed that it corresponds to noncrystalline chitosaccharides associated with glucans, rather than to chitin per se. Two putative chitin synthase (CHS) genes were identified by data mining of an A. euteiches expressed sequence tag collection and Southern blot analysis, and full-length cDNA sequences of both genes were obtained. Phylogeny analysis indicated that oomycete CHS diversification occurred before the divergence of the major oomycete lineages. Remarkably, lectin labeling showed that the Aphanomyces euteiches chitosaccharides are exposed at the cell wall surface, and study of the effect of the CHS inhibitor nikkomycin Z demonstrated that they are involved in cell wall function. These data open new perspectives for the development of antioomycete drugs and further studies of the molecular mechanisms involved in the recognition of pathogenic oomycetes by the host plants.  相似文献   

12.
13.
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.  相似文献   

14.
The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission.To better understand infection stratagems of insect pathogenic fungi,we analyzed the global gene expression profiling of Beauveria bassiana at 36,60,84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing(RNA-Seq).A total of 5,354 differentially expressed genes(DEGs) are identified over the course of fungal infection.When the fungus grows on the mosquito cuticle,up-regulated DEGs include adhesion-related genes involved in cuticle attachment,Pthll-like GPCRs hypothesized to be involved in host recognition,and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle.Once in the mosquito hemocoel,the fungus evades mosquito immune system probably through up-regulating expression of |3-l,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls.Moreover,six previous unknown SSCP(small secreted cysteine-rich proteins) are significantly up-regulated,which may serve as "effectors" to suppress host defense responses.B.bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress.At late stage of infection,B.bassiana activates a broad spectrum of genes including nutrient degrading enzymes,some transporters and metabolism pathway components,to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth.These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosqaito interactions.  相似文献   

15.
We have cloned chs1+, a Schizosaccharomyces pombe gene with similarity to class II chitin synthases, and have shown that it is responsible for chitin synthase activity present in cell extracts from this organism. Analysis of this activity reveals that it behaves like chitin synthases from other fungi, although with specific biochemical characteristics. Deletion or overexpression of this gene does not lead to any apparent defect during vegetative growth. In contrast, chs1+ expression increases significantly during sporulation, and this is accompanied by an increase in chitin synthase activity. In addition, spore formation is severely affected when both parental strains carry a chs1 deletion, as a result of a defect in the synthesis of the ascospore cell wall. Finally, we show that wild-type, but not chs1-/chs1-, ascospore cell walls bind wheatgerm agglutinin. Our results clearly suggest the existence of a relationship between chs1+, chitin synthesis and ascospore maturation in S. pombe.  相似文献   

16.
Previous studies (Aufauvre-Brown et al., 1997; Mellado et al., 1996a,b ) have shown that only two genes of the Aspergillus fumigatus chitin synthase family, chsG and chsE, play a role in the morphogenesis of this fungal species. An A. fumigatus strain lacking both chsG (class III CHS) and chsE (class V CHS) genes was constructed by gene replacement of the chsE gene with a copy that has its conserved coding region interrupted by the hph resistance cassette in an A. fumigatus chsG- genetic background. Unexpectedly the double disruption was not lethal. The double mutant AfchsG-/chsE- strain (i) has reduced chitin synthase activity with or without trypsin stimulation, (ii) has a reduced colony radial growth rate, (iii) produces highly branched hyphae, (iv) exhibits aberrant features, such as periodic swellings along the length of the hyphae and a block in conidiation that can be partially restored by an osmotic stabilizer (v) shows alterations in the shape and germination capacity of the conidia, and (vi) has a cell wall that contains half the chitin of the parental strain and is, unexpectedly, highly enriched in alpha-(1-3) glucan.  相似文献   

17.
Chitin synthase genes of the arbuscular mycorrhizal fungus Glomus versiforme were sought in an investigation of the molecular basis of fungal growth. Three DNA fragments (Gvchs1, Gvchs2 and Gvchs3) corresponding to the conserved regions of distinct chitin synthase (chs) genes were amplified by means of the polymerase chain reaction (PCR) with two sets of degenerate primers. Gvchs1 and Gvchs2 encode two class I chitin synthases, whereas Gvchs3 encodes a class IV chitin synthase. A genomic library was used to obtain the Gvchs3 complete gene (1194 amino acids), which shows a very close similarity to the class IV chitin synthase from Neurospora crassa.  相似文献   

18.
The co-ordination of chitosan and chitin synthesis in Mucor rouxii   总被引:1,自引:0,他引:1  
Chitin synthetase preparations from cell walls and chitosomes of the fungus Mucor rouxii were tested for their ability to synthesize chitosan when incubated with uridine diphosphate N-acetyl-D-glucosamine in the presence of chitin deacetylase. The most effective chitin synthetase preparation was one dissociated from cell walls with digitonin. The rate of chitosan synthesis by the wall-dissociated chitin synthetase was about three times that of an equivalent amount of cell walls. The chitosan-synthesizing ability of chitosomes was relatively low, but was more than tripled by treatment with digitonin. Presumably, digitonin improves chitosan yields of dissociating chitin synthetase. The dissociated enzyme would produce dispersed chitin chains that could be attacked by chitin deacetylase before they have time to crystallize into microfibrils. The regulation of chitin and chitosan syntheses in vivo may be determined by the organization of chitin synthetase molecules at the cell surface. Those molecules that remain organized as a complex, similar if not identical to that found in chitosomes, would produce mainly chitin. Chitosan would be preferentially produced by chitin synthetase molecules which are dispersed upon reaching the cell surface.  相似文献   

19.
In a screen for cell wall defects in Saccharomyces cerevisiae, we isolated a strain carrying a mutation in the Cdc28-activating kinase CAK1. The cak1P212S mutant cells exhibit multiple, elongated and branched buds, beta(1,3)glucan-poor regions of the cell periphery and lysed upon osmotic shock after treatment with the chitin synthase III inhibitor Nikkomycin Z. Ultrastructural examination of cak1P212S mutants revealed a thin, uneven cell wall and marked abnormalities in septum formation. In all of the above aspects, the cak1P212S mutants are similar to previously described cla4 mutants, suggesting that the cell wall defects are common to mutants with hyperpolarized growth. In cak1P212S mutants, chitin accumulates all over the surface of the cells and glucan synthase activity is located preferentially to the tips of elongated buds. We conclude that the cell wall weakness in cak1P212S mutants is caused by hyperpolarized secretion of glucan synthase and lack of reinforcement of the lateral cell walls. Showing that the defect depends at least in part on Cdc28, the cak1P212S hyperpolarized growth phenotype can be suppressed by a Cak1-independent Cdc28-allele. The results underline the importance of a minor cell wall component, the chitin of lateral walls, for the integrity of the cell in a stress situation.  相似文献   

20.
Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号