首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human B cell line, TKS-1, which was established from the peripheral blood of a patient with rheumatoid arthritis, was found to spontaneously produce a factor which enhances the activity of interleukin 1 (IL-1). This factor, designated B cell-derived growth-enhancing factor (BGEF), enhanced IL-1-induced proliferation of peanut agglutinin nonagglutinated thymocytes. BGEF also enhanced IL-1-induced production of interleukin 2 (IL-2) by both thymocytes and a human T cell clone, HSB.2 C5B2. BGEF alone did not induce the production of IL-2. BGEF failed to induce proliferation of the IL-2-dependent T cell clone, and did not enhance its response to IL-2. The activity of BGEF was not blocked by antisera against human IL-1-alpha or human IL-1-beta. Gel filtration analysis revealed that BGEF has a m.w. of 60,000 to 65,000 in its native state. We concluded that BGEF differed from IL-1 and IL-2, but is a novel factor produced by TKS-1 cells. In addition, we found that partially purified B cells from patients with rheumatoid arthritis produced factors which enhanced the activity of IL-1.  相似文献   

2.
Intranasal administration of peptide Ac1-9[4Y], based on the N-terminal epitope of myelin basic protein, can induce CD4(+) T cell tolerance, and suppress experimental autoimmune encephalomyelitis induction. The peptide-induced regulatory T (PI-T(Reg)) cells failed to produce IL-2, but expressed IL-10 in response to Ag and could suppress naive T cell responses in vitro. Analysis of Jak-STAT signaling pathways revealed that the activation of Jak1, STAT3, and STAT5 were induced in tolerant T cells after Ag stimulation in vivo. In addition, the expression of suppressor of cytokine signaling 3 was induced in tolerant T cells, suggesting that cytokines regulate the tolerant state of the PI-T(Reg) cells. Stimulation of PI-T(Reg) cells in vitro with IL-10 induced Jak1 and STAT3 activation, but not STAT5, suggesting that IL-10 is important, but not the only cytokine involved in the development of T cell tolerance. Although IL-2 expression was deficient, stimulation with IL-2 in vitro induced Jak1 and STAT5 activation in PI-T(Reg) cells, restored their proliferative response to antigenic stimulation, and abrogated PI-T(Reg)-mediated suppression in vitro. However, the addition of IL-2 could not suppress IL-10 expression, and the IL-2 gene remained inactive. After withdrawal of IL-2, the PI-T(Reg) cells regained their nonproliferative state and suppressive ability. These results underline the ability of the immune system to maintain tolerance to autoantigens, but at the same time having the ability to overcome the suppressive phenotype of tolerant T cells by cytokines, such as IL-2, during the protective immune response to infection.  相似文献   

3.
Glucocorticoid-induced tumor necrosis factor receptor (GITR), found constitutively expressed on human primary natural killer (NK) cells at low levels was up-regulated upon stimulation by either Toll-like receptor ligand or NK cell growth factor, interleukin (IL)-15. cDNA microarray analysis showed that engagement of GITR primarily suppressed the activation of NF-KB pathway of NK cells and up-regulated anti-inflammatory genes heme oxygenase-1 and IL-10. Further analysis revealed that GITR activation suppressed NK cell proliferation in response to IL-15. GITR activation also suppressed proinflammatory cytokine secretion and increased NK cell apoptosis. GITR activation resulted in blocked phosphorylation of Stat5 and Akt, which may have contributed to the observed antiproliferative effect of GITR on NK cells. Increased apoptosis was independent of the Fas-FasL pathway, but Bcl-XL and phospho-Bad protein expressions were diminished, suggesting involvement of the mitochondrial apoptosis pathway. The results suggest that although GITR is an activation marker for NK cells similar to that for T cells, GITR serves as a negative regulator for NK cell activation. Our studies demonstrate a novel physiological role of GITR on NK cells.  相似文献   

4.
Attempts were made to generate Ag-specific suppressor T cells from Ag-primed spleen cells by using glycosylation inhibiting factor (GIF). BDF1 mice were primed with alum-absorbed OVA and their spleen cells were stimulated with OVA. Ag-activated T cells were then propagated in IL-2-containing conditioned medium. Incubation of the T cells with OVA-pulsed syngeneic macrophages resulted in the formation of IgE-potentiating factor and glycosylation-enhancing factor that has affinity for OVA, i.e., OVA-specific glycosylation-enhancing factor. However, if the same Ag-activated splenic T cells were propagated in the IL-2-containing medium in the presence of GIF T cells obtained in the cultures formed IgE-suppressive factors and OVA-specific GIF on antigenic stimulation. Thus we constructed T cell hybridomas from the Ag-activated T cells propagated by IL-2 in the presence of GIF. A representative hybridoma, 71B4, formed OVA-specific GIF on incubation with OVA-pulsed macrophages of BDF1 mice or C57B1/6 mice. However, if the same hybridoma cells were incubated with OVA alone or with OVA-pulsed macrophages of H-2k or H-2d strains, they produced GIF that had no affinity for OVA. The OVA-specific GIF bound to OVA-Sepharose but did not bind to BSA-Sepharose or KLH Sepharose. Intravenous injections of the OVA-specific GIF from the hybridoma suppressed the IgE and IgG1 anti-DNP antibody response of BDF1 mice to DNP-OVA, but failed to suppress the anti-hapten antibody responses of the strain to DNP-keyhole limpet hemocyanin, indicating that the factors suppressed the antibody response in a carrier-specific manner. However, the same OVA-specific GIF failed to suppress the anti-hapten antibody response of DBA/1 mice to DNP-OVA, suggesting that the immunosuppressive effects of the factors is MHC restricted.  相似文献   

5.
Recombinant interleukin 4 promotes the growth of human T cells   总被引:27,自引:0,他引:27  
Recently, we reported the isolation of a cDNA clone that encodes a polypeptide which has B cell and T cell growth factor activities. The amino acid sequence of this polypeptide deduced from the nucleotide sequence of the cDNA clone showed significant homology with mouse B cell stimulating factor-1. Because of its multiple biologic activities, it was designated interleukin 4 (IL-4). Here we describe the effects of supernatants of Cos-7 mouse cells transfected with the IL-4 coding cDNA clone in a mammalian expression vector, on human thymocyte T cells and T cell clones. The T cell growth-promoting effect of IL-4 on preactivated T cells was not inhibited by monoclonal antibodies against IL-2 or the IL-2 receptor, indicating that the IL-4 activity is independent from IL-2 or the IL-2 receptor. IL-4 induces a low proliferative response in thymocytes and peripheral blood lymphocytes, but the response was considerably enhanced by preactivation of the thymocytes or peripheral blood T cells. Both T4+ and T8+ antigen-specific proliferative and cytotoxic T cell clones and T3 natural killer clones proliferated in response to IL-4. But one of six T4+ and one of four T8+ T cell clones were consistently found to be unresponsive. The proliferative responses to IL-4 were always lower than those obtained with IL-2. Most of the T cell clones generally became unresponsive to IL-4 10 days after stimulation, but still responded well to IL-2. These results indicate that the responsiveness to IL-4 is relatively short lasting and is regulated by activation signals. Interestingly, IL-4 acted in synergy with IL-2 in promoting the growth of T cell clones. Our results establish that IL-4 can act as a T cell growth factor independently of IL-2.  相似文献   

6.
Recent studies have demonstrated that IL-1 and IL-6 are synergistic accessory signals for activation of T cells. In this study, highly purified human T cells were cultured with either a stimulating pair of anti-CD2 mAb or with immobilized anti-CD3 mAb. Monocytes, a cellfree monocyte culture supernatant or IL-1 were required for anti-CD2-stimulated T cell proliferation, and they each strongly enhanced anti-CD3-induced T cell growth. IL-6 was synergistic with IL-1 as a helper factor for T cell growth after activation via CD2, but we could not demonstrate any effect of IL-6 in the CD3 pathway. The mechanism of the synergistic helper activity of IL-1 and IL-6 on T cell activation in the CD2 pathway was further examined. IL-1 (but not IL-6) was required for induction of IL-2 production. Both IL-1 and IL-6 enhanced IL-2R (p55) expression and the proliferative response to IL-2. T cell proliferation after stimulation with anti-CD2 and IL-1 or IL-1/IL-6 proceeded through an autocrine IL-2-dependent pathway. Moreover we found that, in the absence of IL-1, IL-6 still supported a transient and limited proliferation of anti-CD2- (but not of anti-CD3-) stimulated T cells, which apparently was independent of the autocrine growth factors IL-2 or IL-4. Our data suggest that IL-6 is important as an accessory signal for T cell growth in the CD2 pathway of T cell activation.  相似文献   

7.
8.
Lymphoid enhancer-binding factor 1 (LEF-1) and T cell factor (TCF-1) are downstream effectors of the Wnt signaling pathway and are involved in the regulation of T cell development in the thymus. LEF-1 and TCF-1 are also expressed in mature peripheral primary T cells, but their expression is down-regulated following T cell activation. Although the decisive roles of LEF-1 and TCF-1 in the early stages of T cell development are well documented, the functions of these factors in mature peripheral T cells are largely unknown. Recently, LEF-1 was shown to suppress Th2 cytokines interleukin-4 (IL-4), -5, and -13 expression from the developing Th2 cells that overexpress LEF-1 through retrovirus gene transduction. In this study, we further investigated the expression and functions of LEF-1 and TCF-1 in peripheral CD4+ T cells and revealed that LEF-1 is dominantly expressed in Th1 but not in Th2 cells. We identified a high affinity LEF-1-binding site in the negative regulatory element of the IL-4 promoter. Knockdown LEF-1 expression by LEF-1-specific small interfering RNA resulted in an increase in the IL-4 mRNA expression. This study further confirms a negative regulatory role of LEF-1 in mature peripheral T cells. Furthermore, we found that IL-4 stimulation possesses a negative effect on the expressions of LEF-1 and TCF-1 in primary T cells, suggesting a positive feedback effect of IL-4 on IL4 gene expression.  相似文献   

9.
The calcium ionophore, A23187, when used alone was found to induce proliferation of murine T cells, at concentrations of 0.5-1 mM. This response required the presence of syngeneic splenic adherant cells (SAC) as a source of accessory cells. Interestingly, only CD4+ T cells but not CD8+ T cells or B cells responded to the calcium ionophore by proliferation. The inability of CD8+ T cells or B cells to respond was not related to decreased elevation in the intracellular ionized calcium [Ca2+]i concentration induced by the ionophore, because activated CD4+ T, CD8+ T and B cells all exhibited similar elevation in [Ca2+]i. The inability of CD8+ T cells to respond to calcium ionophore was probably due to insufficient production of autocrine growth factors, such as IL-2, inasmuch as the addition of exogenous IL-2 could completely restore the CD8+ T cell responsiveness. Also, exogenous rIL-1 could partially restore purified T cell response to calcium ionophore, whereas, rIL-6 failed to do so. IL-2, but not IL-4, acted as an autocrine growth factor for T cells responding to the calcium ionophore in the presence of SAC, since, antibodies against IL-2 or IL-2 receptor (IL-2R) but not against IL-4, could inhibit the T cell proliferation. Furthermore, exogenous rIL-2 but not rIL-4 supported the proliferation of T cells to calcium ionophore in the absence of accessory cells. Our results suggest that murine lymphocytes exhibit heterogeneity in their proliferative responsiveness to calcium ionophore and that this may not depend on the early activation signal such as the elevation in [Ca2+]i) induced by the ionophore but may depend on subsequent signals which regulate endogenous growth factor production.  相似文献   

10.
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.  相似文献   

11.
Regulatory T cells (Tregs) suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR), expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2) was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFβ, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1β, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation.  相似文献   

12.
During the acute T cell response most effector T cells die while some survive and become memory T cells. Selective expression of CD127 (IL-7Ralpha) on effector T cells has been proposed to engender their survival into the memory pool. We assessed the role of IL-7 in effector T cell survival using MHC class II tetramers to track a CD4+ T cell response following infection with a recombinant vaccinia virus (rVV-2W1S). Exogenous IL-7 prevented the contraction of the 2W1S-specific CD4+ T cell response after rVV-2W1S infection. IL-7 increased proliferation of, and Bcl-2 expression within, 2W1S-specific T cells; the latter was required for IL-7-driven prevention of contraction. Conversely, in vivo neutralization of IL-7 or Bcl-2 did not exacerbate the contraction of 2W1S-specific CD4+ T cells. These data suggest that IL-7 administration may enhance the survival of effector T cells but that IL-7 is not the limiting factor during normal contraction of the response.  相似文献   

13.
T cell deletion and/or inactivation were considered the leading mechanisms for neonatal tolerance. However, recent investigations have indicated that immunity develops at the neonatal stage but evolves to guide later T cell responses to display defective and/or biased effector functions. Although neonatal-induced T cell modulation provides a useful approach to suppress autoimmunity, the mechanism underlying the biased function of the T cells remains unclear. In prior studies, we found that exposure of newborn mice to Ig-PLP1, a chimera expressing the encephalitogenic proteolipid protein (PLP) sequence 139-151, induced deviated Th2 lymph node cells producing IL-4 instead of IL-2 and anergic splenic T cells that failed to proliferate or produce IFN-gamma yet secreted significant amounts of IL-2. However, if assisted with IFN-gamma or IL-12, these anergic splenic T cells regained full responsiveness. The consequence of such biased/defective T cells responses was protection of the mice against experimental allergic encephalomyelitis. In this study, investigations were performed to delineate the mechanism underlying the novel form of IFN-gamma-dependent splenic anergy. Our findings indicate that CD40 ligand expression on these splenic T cells is defective, leading to noneffective cooperation between T lymphocytes and APCs and a lack of IL-12 production. More striking, this cellular system revealed a requirement for IL-2R expression for CD40 ligand-initiated, IL-12-driven progression of T cells into IFN-gamma production.  相似文献   

14.
IL-2 has been used in culture of primary T cells to maintain cell proliferation. We have previously reported that IL-27 inhibits HIV-1 replication in primary T cells in the presence of IL-2. To gain a better understanding of the mechanisms involved in this inhibitory effect, we attempted to investigate in detail the effects of IL-27 and IL-2 using several cell lines. Unexpectedly, IL-27 did not inhibit HIV-1 in T cell lines, whereas IL-2 inhibited HIV-1 replication in the human T cell lymphotrophic virus (HTLV)-1-transformed T cell lines, MT-2, MT-4, SLB-1, and ATL-2. No effects were seen in HTLV-1-negative cell lines. Utilizing MT-2 cells, we demonstrated that IL-2 treatment inhibited HIV-1 syncytia-inducing ability and dose-dependently decreased supernatant p24 antigen levels by >90%. Using real time PCR and Western blot analysis, we observed that IL-2 treatment induced the host restriction factor, APOBEC3G with accumulation into the lower molecular mass active form as characterized by FPLC. Further analysis revealed that the virus recovered from IL-2-treated MT-2 cells had impaired replication competency. This was found to be due to incorporation of APOBEC3G into the virion despite the presence of Vif. These findings demonstrate a novel role for IL-2 in regulating production of infectious HIV-1 virions in HTLV-1-infected cells through the induction of APOBEC3G.  相似文献   

15.
T regulatory-1 cells induce IgG4 production by B cells: role of IL-10   总被引:2,自引:0,他引:2  
The study was aimed to find out whether T cells with a regulatory profile could regulate the secretion of IgG4. Using tetanus Ag we found that PBMC of healthy human donors responded to exogenous IL-10 by down-regulating IgG1 and increasing IgG4 secretion. IgE was not affected. To investigate the direct effect of IL-10-producing T cells on B cells, we generated T cell clones (TCC) with two different cytokine profiles: first, IL-10high, IL-2low, IL-4low TCC, and second, IL-10low, IL-2high, IL-4high. The T cell-dependent Ab secretion was measured by coculturing purified CD19+ B cells and the TCC. Interestingly, we found that IgG4 production in the coculture correlated with the TCC production of IL-10 (r2 = 0.352, p = 0.0001), but not with IL-2, IL-4, nor IFN-gamma. IgE showed only a trend with regard to IL-4. Further, there was decreased Ab secretion in the absence of T-B cell contact. IL-10 also induced IgG4 when added to a Th1 TCC-B cell coculture system. The present study thus shows that in T-B cell coculture, IL-10, if induced by the TCC or added to the system, down-regulates the immune response by inducing IgG4 secretion. This establishes a direct implication of IL-10 in humoral hyporesponsiveness, particularly in compartments where the T-B cell interplay determines the subsequent immune response. The correlation between IgG4 and IL-10 (r2 = 0.352) indicates that IL-10 is an important but not the only factor for IgG4 induction.  相似文献   

16.
Tumor-infiltrating lymphocytes from mice bearing minor histoincompatible tumor cells in the anterior chamber (AC) or subconjunctival (SCon) space of the eye have been shown to contain large numbers of tumor-specific precursor cytotoxic T cells. Because SCon tumors eventually acquire directly cytotoxic, tumor-specific T cells and are rejected by their hosts and because AC tumors never acquire cytotoxic effector cells and are not rejected, we have examined tumor-infiltrating lymphocytes from both types of ocular tumors for the capacity to secrete lymphokines in response to in vitro stimulation with tumor cells. The results indicate that T "helper" cells were able to infiltrate both SCon and AC tumors. In the former, T cells capable of secreting IL-2 and IL-4 were found whereas in the latter only IL-2-secreting T cells were detected. These findings implicate a defect in local delivery of appropriate T cell help as the reason why AC tumors are not rejected. The failure of AC tumor-bearing mice to destroy their tumors correlates not only with defective delivery of local help but with a systemic inability to produce tumor-specific T cells that can secrete IL-2 and IL-4. Because these mice also generate down-regulatory T cells that suppress the expression of tumor-specific delayed hypersensitivity, they appear to have an immunologically mediated block in T helper cell differentiation which renders them unable to generate either T helper 1 or T helper 2 cells. This immunologic abnormality is discussed in terms of tumor rejection and the phenomenon of immunologic privilege.  相似文献   

17.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

18.
Previous studies have shown that a subpopulation of circulating human B cells expresses the Leu 8 peripheral lymph node homing receptor homologue and that these B cells are capable of producing Ig in response to staphylococcus A Cowan I (SAC). In the present study the effect of a signal delivered via the Leu 8 molecule (using anti-Leu 8 mAb) on B cells was examined. Initially, it was shown that immobilized anti-Leu 8 suppressed IgM and IgG secretion of B cells activated by SAC + IL-2 but not that by PWM-prestimulated B cells or B cells stimulated with PWM in the presence of CD4+, Leu 8- T cells (a source of helper cells). It was also shown that anti-Leu 8 did not suppress SAC + IL-2-stimulated B cell proliferation or expression of IL-2R alpha-chain or c-myc mRNA in B cells. The addition of T cells, monocytes, purified IL-2, rIL-1, rIL-6, or human B cell growth factor did not overcome the inhibitory effect of anti-Leu 8 on SAC-stimulated B cell Ig production, and the inhibitory effect of anti-Leu 8 was not blocked by anti-TGF-beta. Finally, inhibition of B cell differentiation occurred even when anti-Leu 8 was added up to 72 hrs after initiation of cell culture. Thus, anti-Leu 8 is unique among inhibitors of B cell function in that it can down-regulate immunoglobulin synthesis without affecting B cell proliferation. These findings suggest that a natural ligand for Leu 8 could affect not only homing of B cells, but also B cell differentiation.  相似文献   

19.
The relative contributions of IL-2 and IL-4 during the immune response to the retrovirus-induced tumor, FBL, were examined. Both proliferative and cytolytic responses to FBL were measured and compared to similar responses to minor histocompatibility Ag. The addition of alpha IL-2 partially inhibited FBL-stimulated proliferation of purified L3T4+ T cells and nearly completely inhibited the response of Lyt-2+ T cells, whereas alpha IL-4 partially inhibited the proliferative response of the L3T4+ subset but had no effect on the response of the Lyt-2+ subset. The addition of exogenous IL-4 augmented the proliferative response of both subsets. Therefore, IL-4 is an endogenous growth factor for FBL-induced specific proliferation of the L3T4+ and not the Lyt-2+ population, but both subpopulations can respond to IL-4. Similar examination of anti-FBL CTL responses revealed that alpha IL-2, but not alpha IL-4, inhibited FBL-specific Lyt-2+ CTL generation. However, exogenous IL-4 partially replaced the L3T4+ Th cell activity necessary for optimal Lyt-2+ FBL-specific CTL generation. Therefore, IL-4 is not required but can participate in the CTL response. The role of IL-4 during the immune response of B6 mice to minor histocompatibility Ag disparate BALB.B cells was analyzed. alpha IL-4 had no detectable effect on the proliferative or cytolytic response to BALB.B cells, suggesting that endogenous IL-4 does not have a significant role in these responses. The extent of involvement of endogenous IL-4 in the T cell responses to retrovirus-induced tumor Ag and minor histocompatibility Ag presumably reflects the nature of the stimulating Ag, and detection of an IL-4 response may correlate with induction of an antibody response. Thus, the immunizing Ag and/or host B cell repetoire may influence which subsets of L3T4+ Th cells are activated during priming in vivo.  相似文献   

20.
UV-induced immune suppression is a risk factor for sunlight-induced skin cancer. Exposure to UV radiation has been shown to suppress the rejection of highly antigenic UV-induced skin cancers, suppresses delayed and contact hypersensitivity, and depress the ability of dendritic cells to present Ag to T cells. One consequence of UV exposure is altered activation of T cell subsets. APCs from UV-irradiated mice fail to present Ag to Th1 T cells; however, Ag presentation to Th2 T cells is normal. While this has been known for some time, the mechanism behind the preferential suppression of Th1 cell activation has yet to be explained. We tested the hypothesis that this selective impairment of APC function results from altered cytokine production. We found that dendritic cells/macrophages (DC/Mphi) from UV-irradiated mice failed to secrete biologically active IL-12 following in vitro stimulation with LPS. Instead, DC/Mphi isolated from the lymphoid organs of UV-irradiated mice secreted IL-12p40 homodimer, a natural antagonist of biologically active IL-12. Furthermore, when culture supernatants from UV-derived DC/Mphi were added to IL-12-activated T cells, IFN-gamma secretion was totally suppressed, indicating that the IL-12p40 homodimer found in the supernatant fluid was biologically active. We suggest that by suppressing DC/Mphi IL-12p70 secretion while promoting IL-12p40 homodimer secretion, UV exposure preferentially suppress the activation of Th1 cells, thereby suppressing Th-1 cell-driven inflammatory immune reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号