首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A neutralizing human monoclonal antibody, KZ52, protects guinea pigs from lethal Ebola Zaire virus challenge. Administration before or up to 1 h after challenge resulted in dose-dependent protection by the antibody. Interestingly, some antibody-treated animals survived despite developing high-level viremia, suggesting that the mechanism of protection by KZ52 may extend beyond reduction of viremia by virus neutralization. KZ52 is a promising candidate for immunoprophylaxis of Ebola virus infection.  相似文献   

2.
A major unknown in human immunodeficiency virus (HIV-1) vaccine design is the efficacy of antibodies in preventing mucosal transmission of R5 viruses. These viruses, which use CCR5 as a coreceptor, appear to have a selective advantage in transmission of HIV-1 in humans. Hence R5 viruses predominate during primary infection and persist throughout the course of disease in most infected people. Vaginal challenge of macaques with chimeric simian/human immunodeficiency viruses (SHIV) is perhaps one of the best available animal models for human HIV-1 infection. Passive transfer studies are widely used to establish the conditions for antibody protection against viral challenge. Here we show that passive intravenous transfer of the human neutralizing monoclonal antibody b12 provides dose-dependent protection to macaques vaginally challenged with the R5 virus SHIV(162P4). Four of four monkeys given 25 mg of b12 per kg of body weight 6 h prior to challenge showed no evidence of viral infection (sterile protection). Two of four monkeys given 5 mg of b12/kg were similarly protected, whereas the other two showed significantly reduced and delayed plasma viremia compared to control animals. In contrast, all four monkeys treated with a dose of 1 mg/kg became infected with viremia levels close to those for control animals. Antibody b12 serum concentrations at the time of virus challenge corresponded to approximately 400 (25 mg/kg), 80 (5 mg/kg), and 16 (1 mg/kg) times the in vitro (90%) neutralization titers. Therefore, complete protection against mucosal challenge with an R5 SHIV required essentially complete neutralization of the infecting virus. This suggests that a vaccine based on antibody alone would need to sustain serum neutralizing antibody titers (90%) of the order of 1:400 to achieve sterile protection but that lower titers, around 1:100, could provide a significant benefit. The significance of such substerilizing neutralizing antibody titers in the context of a potent cellular immune response is an important area for further study.  相似文献   

3.
Neutralizing antibodies have been shown to protect macaques against SHIV challenge. However, genetically diverse HIV-1 clades have evolved, and a key question left unanswered is whether neutralizing antibodies can confer cross-clade protection in vivo. The novel human monoclonal antibody HGN194 was isolated from an individual infected with an HIV-1 clade AG recombinant circulating recombinant form (CRF). HGN194 targets an epitope in the third hypervariable loop (V3) of HIV-1 gp120 and neutralizes a range of relatively neutralization-sensitive and resistant viruses. We evaluated the potential of HGN194 to protect infant rhesus monkeys against a SHIV encoding a primary CCR5-tropic HIV-1 clade C envelope. After high-dose mucosal challenge, all untreated controls became highly viremic while all HGN194-treated animals (50 mg/kg) were completely protected. When HGN194 was given at 1 mg/kg, one out of two monkeys remained aviremic, whereas the other had delayed, lower peak viremia. Interestingly, all protected monkeys given high-dose HGN194 developed Gag-specific proliferative responses of both CD4+ and CD8+ T cells. To test whether generation of the latter involved cryptic infection, we ablated CD8+ cells after HGN194 clearance. No viremia was detected in any protected monkeys, thus ruling out virus reservoirs. Thus, induction of CD8 T-cell immunity may have resulted from transient "Hit and Run" infection or cross priming via Ag-Ab-mediated cross-presentation. Together, our data identified the HGN194 epitope as protective and provide proof-of-concept that this anti-V3 loop mAb can prevent infection with sterilizing immunity after challenge with virus of a different clade, implying that V3 is a potential vaccine target.  相似文献   

4.
The activity of antibodies against filoviruses is poorly understood but has important consequences for vaccine design and passive prophylaxis. To investigate this activity, a panel of recombinant human monoclonal antibodies to Ebola virus antigens was isolated from phage display libraries constructed from RNA from donors who recovered from infection in the 1995 Ebola virus outbreak in Kikwit, Democratic Republic of Congo. Antibodies reactive with nucleoprotein (NP), envelope glycoprotein (GP), and secreted envelope glycoprotein (sGP) were characterized by immunofluorescence and radioimmunoprecipitation assays. Four antibodies reacting strongly with sGP and weakly with GP and two antibodies reacting with NP were not neutralizing. An antibody specific for GP neutralized Ebola virus to 50% at 0.4 microgram/ml as the recombinant Fab fragment and to 50% at 0.3 microgram/ml (90% at 2.6 microgram/ml) as the corresponding whole immunoglobulin G1 molecule. The studies indicate that neutralizing antibodies are produced in infection by Ebola virus although probably at a relatively low frequency. The neutralizing antibody may be useful in vaccine design and as a prophylactic agent against Ebola virus infection.  相似文献   

5.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

6.
The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure. After controlling the macaque estrous cycle with progesterone, anti-HIV-1 neutralizing monoclonal antibodies 2F5 and 2G12, and HIV immune globulin were tested. Whereas all five control monkeys displayed high plasma viremia and rapid CD4 cell decline, 14 antibody-treated macaques were either completely protected against infection or against pathogenic manifestations of SHIV-infection. Infusion of all three antibodies together provided the greatest amount of protection, but a single monoclonal antibody, with modest virus neutralizing activity, was also protective. Compared with our previous intravenous challenge study with the same virus and antibodies, the data indicated that greater protection was achieved after vaginal challenge. This study demonstrates that antibodies can affect transmission and subsequent disease course after vaginal SHIV-challenge; the data begin to define the type of antibody response that could play a role in protection against mucosal transmission of HIV-1.  相似文献   

7.
Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release.  相似文献   

8.
The potential of the simian immunodeficiency virus (SIV) variable 2 (V2) domain as an effective region to boost SIV-neutralizing antibodies and to protect against live SIV challenge was tested in rhesus macaques. In this study, two rhesus macaques were primed with vaccinia virus recombinants expressing the surface glycoprotein gp140 of SIVmac and were given booster injections with the SIVmac V2 domain presented by a highly immunogenic carrier, the hepatitis B surface antigen (HBsAg). The two vaccinated macaques exhibited SIV-neutralizing antibodies after primer injections that were enhanced by the V2/HBsAg injections. Part of these SIV-neutralizing antibodies were directed specifically to the V2 region, as shown by neutralization-blocking experiments. However, despite having consistent SIV-neutralizing antibody titers, animals were not protected against homologous challenge with BK28, the molecular clone of SIVmac251. No SIV envelope-specific cellular cytotoxic response was detected throughout the immunization protocol, suggesting that neutralizing antibodies directed to SIV envelope gp140 and especially to the V2 domain were unable on their own to protect against SIV challenge. Furthermore, the vaccinees seemed to have higher viral loads than control animals after challenge, raising the question of whether neutralizing antibodies induced by vaccination and directed to the SIV envelope selected viral escape mutants, as shown previously in SIV-infected macaques. This mechanism is certainly worthy of intensive investigation and raises some concern for SIV envelope-targeted immunization.  相似文献   

9.
Although antibodies can prevent or modulate lentivirus infections in nonhuman primates, the biological functions of antibody responsible for such effects are not known. We sought to determine the role of antibody-dependent cell-mediated virus inhibition (ADCVI), an antibody function that inhibits virus yield from infected cells in the presence of Fc receptor-bearing effector cells, in preventing or controlling SIVmac251 infection in rhesus macaques (Macaca mulatta). Using CEMx174 cells infected with simian immunodeficiency virus mac251 (SIVmac251), both polyclonal and monoclonal anti-SIV antibodies were capable of potent virus inhibition in the presence of human peripheral blood mononuclear cell (PBMC) effector cells. In the absence of effector cells, virus inhibition was generally very poor. PBMCs from healthy rhesus macaques were also capable of mediating virus inhibition either against SIVmac251-infected CEMx174 cells or against infected, autologous rhesus target cells. We identified both CD14(+) cells and, to a lesser extent, CD8(+) cells as the effector cell population in the rhesus PBMCs. Finally, pooled, nonneutralizing SIV-antibody-positive serum, shown in a previous study to prevent infection of neonatal macaques after oral SIVmac251 challenge, had potent virus-inhibitory activity in the presence of effector cells; intact immunoglobulin G, rather than F(ab')(2), was required for such activity. This is the first demonstration of both humoral and cellular ADCVI functions in the macaque-SIV model. ADCVI activity in nonneutralizing serum that prevents SIV infection suggests that ADCVI may be a protective immune function. Finally, our data underscore the potential importance of Fc-Fc receptor interactions in mediating biological activities of antibody.  相似文献   

10.
Vaccine-induced immunity to Ebola virus infection in nonhuman primates (NHPs) is marked by potent antigen-specific cellular and humoral immune responses; however, the immune mechanism of protection remains unknown. Here we define the immune basis of protection conferred by a highly protective recombinant adenovirus virus serotype 5 (rAd5) encoding Ebola virus glycoprotein (GP) in NHPs. Passive transfer of high-titer polyclonal antibodies from vaccinated Ebola virus-immune cynomolgus macaques to naive macaques failed to confer protection against disease, suggesting a limited role of humoral immunity. In contrast, depletion of CD3(+) T cells in vivo after vaccination and immediately before challenge eliminated immunity in two vaccinated macaques, indicating a crucial requirement for T cells in this setting. The protective effect was mediated largely by CD8(+) cells, as depletion of CD8(+) cells in vivo using the cM-T807 monoclonal antibody (mAb), which does not affect CD4(+) T cell or humoral immune responses, abrogated protection in four out of five subjects. These findings indicate that CD8(+) cells have a major role in rAd5-GP-induced immune protection against Ebola virus infection in NHPs. Understanding the immunologic mechanism of Ebola virus protection will facilitate the development of vaccines for Ebola and related hemorrhagic fever viruses in humans.  相似文献   

11.
An infectious, virulence-attenuated molecular clone of simian immunodeficiency virus (SIV), SIVMAC-1A11, was derived from an SIV isolate that causes fatal immunodeficiency in rhesus macaques. When inoculated intravenously in rhesus macaques, SIVMAC-1A11 induced transient viremia (1 to 6 weeks) without clinical disease and a persistent humoral antibody response. The antibodies were directed mainly against the viral envelope glycoproteins, as determined by immunoblots and virus neutralization. The potential of this virulence-attenuated virus to protect against intravenous challenge with a pathogenic SIVMAC strain was assessed. Five rhesus macaques were each given two intravenous inoculations with SIVMAC-1A11 7 months apart. Three of the five immunized monkeys and four naive control animals were then challenged with 100 to 1,000 100% animal infectious doses of pathogenic SIVMAC. All seven animals became persistently viremic following the challenge. Four of four unimmunized animals developed severe clinical signs of simian acquired immunodeficiency syndrome by 38 to 227 days after challenge and were euthanatized 91 to 260 days postchallenge. However, no signs of illness were seen in immunized monkeys until 267 to 304 days postchallenge, when two of three immunized animals developed mild thrombocytopenia and lymphopenia; one of these animals died with clinical signs of simian immunodeficiency disease at 445 days after challenge. The two SIVMAC-1A11-immunized monkeys that were not challenged were healthy and antibody positive 22 months after the initial immunization. Thus, although live SIVMAC-1A11 was immunogenic and did not induce any disease, it failed to protect rhesus macaques against infection with a moderately high dose of pathogenic virus. However, immunization prevented severe, early disease and prolonged the lives of monkeys subsequently infected with pathogenic SIV.  相似文献   

12.
Passive transfer studies using monoclonal or polyclonal antibodies in the macaque model have been valuable for determining conditions for antibody protection against immunodeficiency virus challenge. Most studies have employed hybrid simian/human immunodeficiency virus (SHIV) challenge in conjunction with neutralizing human monoclonal antibodies. Passive protection against SIV, particularly the pathogenic prototype virus SIVmac239, has been little studied because of the paucity of neutralizing antibodies to this virus. Here, we show that the antibody-like molecule CD4-IgG2 potently neutralizes SIVmac239 in vitro. When administered by an osmotic pump to maintain concentrations given the short half-life of CD4-IgG2 in macaques, the molecule provided sterilizing immunity/protection against high-dose mucosal viral challenge to a high proportion of animals (5/7 at a 200 mg dose CD4-IgG2 and 3/6 at a 20 mg dose) at serum concentrations below 1.5 μg/ml. The neutralizing titers of such sera were predicted to be very low and indeed sera at a 1∶4 dilution produced no neutralization in a pseudovirus assay. Macaque anti-human CD4 titers did develop weakly at later time points in some animals but were not associated with the level of protection against viral challenge. The results show that, although SIVmac239 is considered a highly pathogenic virus for which vaccine-induced T cell responses in particular have provided limited benefit against high dose challenge, the antibody-like CD4-IgG2 molecule at surprisingly low serum concentration affords sterilizing immunity/protection to a majority of animals.  相似文献   

13.
The mammalian reoviruses have provided a valuable model for studying the pathogenesis of viral infections of the central nervous system (CNS). We have used this model to study the effect of antibody on disease produced by the neurally spreading reovirus type 3 (Dearing) (T3). Polyclonal and monoclonal antibodies protect mice from fatal infection with T3 after either footpad or intracerebral virus challenge. Protection occurs with monoclonal antibodies directed against the viral cell attachment protein sigma 1, and with polyclonal antisera without T3 sigma 1 binding activity. In vivo protection occurs with both neutralizing and nonneutralizing monoclonal antibodies. Antibody-mediated protection does not require serum complement and, under specific circumstances, can occur via Fc-independent mechanisms. Antibody can protect mice when transferred up to 5 days after intracerebral challenge and up to 7 days after footpad challenge, times when high titers of virus are present in the CNS. Thus, antibody mediated protection against this neurally spreading virus does not require neutralizing antibody or serum complement and occurs even in the face of established CNS infection.  相似文献   

14.
Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.  相似文献   

15.
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.  相似文献   

16.
Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50-70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV-vpu+ (refs. 5,6), a chimeric simian-human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV-vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV-vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV-vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development.  相似文献   

17.
Eight different protocols were compared for their ability to raise protection against immunodeficiency virus challenges in rhesus macaques. The most promising containment of challenge infections was achieved by intradermal DNA priming followed by recombinant fowl pox virus booster immunizations. This containment did not require neutralizing antibody and was active for a series of challenges ending with a highly virulent virus with a primary isolate envelope heterologous to the immunizing strain.  相似文献   

18.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

19.
Eliciting neutralizing antibodies is thought to be a key activity of a vaccine against human immunodeficiency virus (HIV). However, a number of studies have suggested that in addition to neutralization, interaction of IgG with Fc gamma receptors (FcγR) may play an important role in antibody-mediated protection. We have previously obtained evidence that the protective activity of the broadly neutralizing human IgG1 anti-HIV monoclonal antibody (MAb) b12 in macaques is diminished in the absence of FcγR binding capacity. To investigate antibody-dependent cellular cytotoxicity (ADCC) as a contributor to FcγR-associated protection, we developed a nonfucosylated variant of b12 (NFb12). We showed that, compared to fully fucosylated (referred to as wild-type in the text) b12, NFb12 had higher affinity for human and rhesus macaque FcγRIIIa and was more efficient in inhibiting viral replication and more effective in killing HIV-infected cells in an ADCC assay. Despite these more potent in vitro antiviral activities, NFb12 did not enhance protection in vivo against repeated low-dose vaginal challenge in the simian-human immunodeficiency virus (SHIV)/macaque model compared to wild-type b12. No difference in protection, viral load, or infection susceptibility was observed between animals given NFb12 and those given fully fucosylated b12, indicating that FcγR-mediated activities distinct from FcγRIIIa-mediated ADCC may be important in the observed protection against SHIV challenge.  相似文献   

20.
High levels of infused anti-human immunodeficiency virus type 1 (HIV-1) neutralizing monoclonal antibodies (MAbs) can completely protect macaque monkeys against mucosal chimeric simian-human immunodeficiency virus (SHIV) infection. Antibody levels below the protective threshold do not prevent infection but can substantially reduce plasma viremia. To assess if HIV-1/SIV-specific cellular immunity could combine with antibodies to produce sterile protection, we studied the effect of a suboptimal infusion of anti-HIV-1 neutralizing antibodies in macaques with active cellular immunity induced by interleukin-2 (IL-2)-adjuvanted DNA immunization. Twenty female macaques were divided into four groups: (i). DNA immunization plus irrelevant antibody, (ii). DNA immunization plus infusion of neutralizing MAbs 2F5 and 2G12, (iii). sham DNA plus 2F5 and 2G12, and (iv). sham DNA plus irrelevant antibody. DNA-immunized monkeys developed CD4 and CD8 T-cell responses as measured by epitope-specific tetramer staining and by pooled peptide ELISPOT assays for gamma interferon-secreting cells. After vaginal challenge, DNA-immunized animals that received irrelevant antibody became SHIV infected but displayed lower plasma viremia than control animals. Complete protection against SHIV challenge occurred in three animals that received sham DNA plus MAbs 2F5 and 2G12 and in two animals that received the DNA vaccine plus MAbs 2F5 and 2G12. Thus, although DNA immunization produced robust HIV-specific T-cell responses, we were unable to demonstrate that these responses contributed to the sterile protection mediated by passive infusion of neutralizing antibodies. These data suggest that although effector T cells can limit viral replication, they are not able to assist humoral immunity to prevent the establishment of initial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号