首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Zhang  Kaiying  Su  Jingyao  Chen  Danyang  Lin  Binger  Wu  Yucan  Wang  Yibing  Lei  Jiapei  Zheng  Ruilin  Zhu  Bing  Li  Yinghua 《Molecular biology reports》2022,49(9):8381-8390
Molecular Biology Reports - Currently, Liver cancer is the fifth most common tumor and the second most important reason for cancer-related death in the world. However, there are still many...  相似文献   

2.
3.
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway.  相似文献   

4.
Vascular endothelial growth factor (VEGF) mediates angiogenic signaling by activating tyrosine kinase receptors. Endothelial cells treated with VEGF are known to increase reactive oxygen species (ROS) production and activate the MAPK pathway. To identify the target proteins of the VEGF receptor, we treated human umbilical vein endothelial cells (HUVECs) with VEGF or H2O2, and identified and semiquantified tyrosine-phosphorylated proteins, combining 2D-gel electrophoresis, Western analysis using antibody against phospho-tyrosine, and mass spectrometry. We detected 95 proteins that were differentially phosphorylated; some were specifically phosphorylated by VEGF but not by H2O2. 2D-gel electrophoresis revealed that heterogeneous populations of the same protein responded differently to H2O2 and VEGF. Bioinformatic studies examining the nature of the differential phosphorylation in various subpopulations of proteins should provide new insights into VEGF- and H2O2-induced signaling pathways.  相似文献   

5.
6.
Mitochondrial reactive oxygen species in cell death signaling   总被引:49,自引:0,他引:49  
Fleury C  Mignotte B  Vayssière JL 《Biochimie》2002,84(2-3):131-141
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.  相似文献   

7.
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells.  相似文献   

8.
Low-power laser therapy in medicine is widespread but the mechanisms are not fully understood. It has been suggested that low-power laser irradiation (LPLI) could induce photochemical reaction and activate several intracellular signaling pathways. Reactive oxygen species (ROS) are considered to be the key secondary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) and confocal laser scanning microscope, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activation by LPLI was in a dose-dependent manner. The increase of Src phosphorylation at Tyr416 was detected by Western blotting. In the presence of vitamin C, catalase alone, or the combination of catalase and superoxide dismutase (SOD), the activation of Src by LPLI is significantly abolished. In contrast, G?6983 loading, a PKC inhibitor, did not affect this response. Treatment of Hela cells with exogenous H(2)O(2) also resulted in a concentration-dependent activation of Src. These results demonstrated that it was ROS that mediated Src activation by LPLI. Cellular viability assay revealed that laser irradiation of low doses (相似文献   

9.
Mitochondrial reactive oxygen species and Ca2+ signaling   总被引:1,自引:0,他引:1  
Mitochondria are an important source of reactive oxygen species (ROS) formed as a side product of oxidative phosphorylation. The main sites of oxidant production are complex I and complex III, where electrons flowing from reduced substrates are occasionally transferred to oxygen to form superoxide anion and derived products. These highly reactive compounds have a well-known role in pathological states and in some cellular responses. However, although their link with Ca2+ is well studied in cell death, it has been hardly investigated in normal cytosolic calcium concentration ([Ca2+]i) signals. Several Ca2+ transport systems are modulated by oxidation. Oxidation increases the activity of inositol 1,4,5-trisphosphate and ryanodine receptors, the main channels releasing Ca2+ from intracellular stores in response to cellular stimulation. On the other hand, mitochondria are known to control [Ca2+]i signals by Ca2+ uptake and release during cytosolic calcium mobilization, specially in mitochondria situated close to Ca2+ release channels. Mitochondrial inhibitors modify calcium signals in numerous cell types, including oscillations evoked by physiological stimulus. Although these inhibitors reduce mitochondrial Ca2+ uptake, they also impair ROS production in several systems. In keeping with this effect, recent reports show that antioxidants or oxidant scavengers also inhibit physiological calcium signals. Furthermore, there is evidence that mitochondria generate ROS in response to cell stimulation, an effect suppressed by mitochondrial inhibitors that simultaneously block [Ca2+]i signals. Together, the data reviewed here indicate that Ca2+-mobilizing stimulus generates mitochondrial ROS, which, in turn, facilitate [Ca2+]i signals, a new aspect in the biology of mitochondria. Finally, the potential implications for biological modeling are discussed. mitochondria; calcium  相似文献   

10.
Wang Q  Liang B  Shirwany NA  Zou MH 《PloS one》2011,6(2):e17234
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 μM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.  相似文献   

11.
Patients with the genomic instability syndrome Fanconi anemia (FA) commonly develop progressive bone marrow (BM) failure and have a high risk of cancer. Certain manifestations of the disease suggest that the FA immune system is dysfunctional and may contribute to the pathogenesis of both BM failure and malignancies. In this study, we have investigated inflammation and innate immunity in FA hemopoietic cells using mice deficient in Fanconi complementation group C gene (Fancc). We demonstrate that Fancc-deficient mice exhibit enhanced inflammatory response and are hypersensitive to LPS-induced septic shock as a result of hemopoietic suppression. This exacerbated inflammatory phenotype is intrinsic to the hemopoietic system and can be corrected by the re-expression of a wild-type FANCC gene, suggesting a potential role of the FANCC protein in innate immunity. LPS-mediated hemopoietic suppression requires two major inflammatory agents, TNF-alpha and reactive oxygen species. In addition, LPS-induced excessive accumulation of reactive oxygen species in Fancc(-/-) BM cells overactivates the stress kinase p38 and requires prolonged activation of the JNK. Our data implicate a role of inflammation in pathogenesis of FA and BM failure diseases in general.  相似文献   

12.
13.
Heme peroxidases are a class of multifunctional redox-active proteins found in all organisms. We recently cloned, expressed, and characterized an ascorbate peroxidase from Leishmania major (LmAPX) that was capable of detoxifying hydrogen peroxide. Localization studies using green fluorescent protein fusions revealed that LmAPX was localized within the mitochondria by its N-terminal signal sequence. Subcellular fractionation analysis of the cell homogenate by the Percoll density-gradient method and subsequent Western blot analysis with anti-LmAPX antibody further confirmed the mitochondrial localization of mature LmAPX. Submitochondrial fractionation analysis showed that the mature enzyme (~3.6 kDa shorter than the theoretical value of the whole gene) was present in the intermembrane space side of the inner membrane. Moreover, expression of the LmAPX gene was increased by treatment with exogenous H(2)O(2), indicating that LmAPX was induced by oxidative stress. To investigate the biological role of LmAPX we generated Leishmania cells overexpressing LmAPX in the mitochondria. Flow-cytometric analysis, thin-layer chromatography, and IC(50) measurements suggested that overexpression of LmAPX caused depletion of the mitochondrial ROS burden and conferred a protection against mitochondrial cardiolipin oxidation and increased tolerance to H(2)O(2). These results suggest that the single-copy LmAPX gene plays a protective role against oxidative damage.  相似文献   

14.
15.
16.
17.
Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-l-cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.  相似文献   

18.
大黄素提高HeLa细胞对三氧化二砷促凋亡敏感性的研究   总被引:2,自引:0,他引:2  
活性氧(reactive oxygen species,ROS)在三氧化二砷(arsenic trioxide,As2O3)诱导肿瘤细胞凋亡中扮演重要角色。本研究用一种天然蒽醌类物质——大黄素(emodin)作为提高HeLa细胞ROS水平的手段,考察其对As2O3促凋亡敏感性的影响,并探究可能涉及的信号传导机制。结果显示大黄素10μmol/L提高ROS并增加了HeLa细胞在As2O32μmol/L作用下的凋亡率,对正常成纤维细胞却无影响。该联合作用可以促进HeLa细胞线粒体跨膜电位降低;抑制转录因子NF-κB激活。本研究提示:大黄素通过提高ROS介导凋亡信号传导的增强和生存信号传导的抑制,增加HeLa细胞对As2O3促凋亡的敏感性。  相似文献   

19.
Reactive oxygen species can function as intracellular messengers, but linking these signaling events with specific enzymes has been difficult. Purified endothelial nitric-oxide synthase (eNOS) can generate superoxide (O(2)) under special conditions but is only known to participate in cell signaling through NO. Here we show that eNOS regulates tumor necrosis factor alpha (TNFalpha) through a mechanism dependent on the production of O(2) and completely independent of NO. Expression of eNOS in transfected U937 cells increased phorbol 12-myristate 13-acetate-induced TNFalpha promoter activity and TNFalpha production. N(omega)-Methyl-l-arginine, an inhibitor of eNOS that blocks NO production but not its NADPH oxidase activity, did not prevent TNFalpha up-regulation. Likewise, Gln(361)eNOS, a competent NADPH oxidase that lacks NOS activity, retained the ability to increase TNFalpha. Similar to the effect of eNOS, a O(2) donor dose-dependently increased TNFalpha production in differentiated U937 cells. In contrast, cotransfection of superoxide dismutase with eNOS prevented TNFalpha up-regulation, as did partial deletion of the eNOS NADPH binding site, a mutation associated with loss of O(2) production. Thus, eNOS may straddle a bifurcating pathway that can lead to the formation of either NO or O(2), interrelated but often opposing free radical messengers. This arrangement has possible implications for atherosclerosis and septic shock where endothelial dysfunction results from imbalances in NO and O(2) production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号