首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.  相似文献   

2.
We reported previously that CCR9 was neuroprotective in the mouse hippocampal neurons. This study was aimed to investigate if thymus-expressed chemokine (TECK)/CCL25 could promote survival of PC12 cells though its receptor CCR9. pEGFP-N1/CCR9 recombinant was constructed and transfected into PC12 cells. Along with this, 50 nM NGF was used to induce PC12 cells to differentiate into sympathetic-like neurons. We show here that under serum-free conditions and within a concentration range (50-200 nM), TECK rescued pEGFP-N1/CCR9 transfected PC12 cells from undergoing apoptosis in serum-free medium; however, it did not exert a similar effect on the cells in the control. On the other hand, the PC12 cells succumbed to a higher concentration of TECK (≥ 300 nM). Bim expression was up-regulated in PC12 cells cultured in serum-free medium in the absence of factors or with anti-TECK+TECK; however, it was not up-regulated in TECK-treated PC12 cells. p-Akt was detected at 15 min which lasted for at least 60 min when PC12 cells were cultured in serum-free medium with TECK. Additionally, it was shown that such an effect was effectively blocked by PI3K inhibitor, Wortmannin. These data suggest that TECK promotes survival of serum-deprived PC12 cells through its receptor, CCR9, most likely via the PI3K/Akt signaling pathway.  相似文献   

3.
The concentration of glucose in plasma is an important determinant of pancreatic beta-cell mass, whereas the relative contributions of hypertrophy, proliferation, and cell survival to this process are unclear. Glucose results in depolarization and subsequent calcium influx into islet beta-cells. Because depolarization and calcium (Ca(2+)) influx promote survival of neuronal cells, we hypothesized that glucose might alter survival of islet beta-cells through a similar mechanism. In the present studies, cultured mouse islet beta-cells showed a threefold decrease in apoptosis under conditions of 15 mM glucose compared with 2 mM glucose (P < 0.05). MIN6 insulinoma cells incubated in 25 mM glucose for 24 h showed a threefold decrease in apoptosis compared with cells in 5 mM glucose (1.7 +/- 0.2 vs. 6.3 +/- 1%, respectively, P < 0.001). High glucose (25 mM) enhanced survival-required depolarization and Ca(2+) influx and was blocked by phosphatidylinositol (PI) 3-kinase inhibitors. Glucose activation of the protein kinase Akt was demonstrated in both insulinoma cells and cultured mouse islets by means of an antibody specific for Ser(473) phospho-Akt and by an in vitro Akt kinase assay. Akt phosphorylation was dependent on PI 3-kinase but not on MAPK. Transfection of insulinoma cells with an Akt kinase-dead plasmid (Akt-K179M) resulted in loss of glucose-mediated protection, whereas transfection with a constitutively active Akt enhanced survival in glucose-deprived insulinoma cells. The results of these studies defined a novel pathway for glucose-mediated activation of a PI 3-kinase/Akt survival-signaling pathway in islet beta-cells. This pathway may provide important targets for therapeutic intervention.  相似文献   

4.
Signaling pathways for the antiviral and antiproliferative biological effects of type I interferons (IFN) are well established. In this report we demonstrate a novel signaling pathway for IFN-alpha, as it induced rapid phosphorylation of both PKB/Akt and its substrate forkhead. The PI3-kinase inhibitor LY294002 abolished these phosphorylations. PI3-kinase has been implicated in cell survival mediating its effect through the second messenger PIP3 and the subsequent activation of PKB/Akt. We could show that IFN-alpha inhibited spontaneous apoptosis of primary B-lymphocytes, in the absence of a mitogenic stimulus. This effect was inhibited by LY294002. Thus, our data suggests that IFN-alpha promotes survival of peripheral B-lymphocytes via the PI3-kinase-PKB/Akt pathway. In addition, IFN-alpha stimulation of anti-IgM activated cells resulted in downregulated expression of the cell cycle inhibitor p27/Kip1.  相似文献   

5.
The c-fes protooncogene encodes a non-receptor protein-tyrosine kinase (Fes) that has been implicated in the differentiation of myeloid haematopoietic cells. Fes is also expressed in several neuronal cell types and the vascular endothelium, suggestive of a more general function in development. To examine the role of Fes in neuronal differentiation, we investigated the effect of Fes expression on process outgrowth in PC12 cells following stimulation with nerve growth factor (NGF). PC12 cells expressing wild-type and activated mutants of Fes extended processes faster and of greater length than control cells. In contrast, expression of kinase-inactive Fes was without effect, indicating that cooperation with NGF requires Fes kinase activity. Short-term treatment of PC12-Fes cells with NGF enhanced tyrosine phosphorylation of Fes, suggesting upstream regulation by the NGF receptor. Fes-mediated acceleration of neurite outgrowth was blocked by wortmannin and LY294002, implicating phosphatidylinositol 3-kinase (PI3K) activation in the Fes-induced response. In contrast, the MEK inhibitor PD98059 was without effect, suggesting that the Ras-Erk pathway is not involved. These data provide the first evidence that Fes may contribute to morphological differentiation of neuronal cells by enhancing NGF signalling through the PI3K pathway.  相似文献   

6.
7.
Thrombin has been reported to play a pivotal role in the initiation of angiogenesis by indirectly regulating and organizing a network of angiogenic molecules. In addition, it has been proposed that thrombin can directly activate endothelial cell proliferation. However, in this report it was shown that thrombin is a poor growth factor for human endothelial cells, and its modest mitogenic activity is mediated indirectly by the release of heparin-binding epidermal growth factor, subsequent to proteinase-activated receptor 1 (PAR1) activation. On the other hand, it was demonstrated that thrombin is a potent anti-apoptotic factor for endothelial cells, pointing to a novel role of thrombin in vascular protection. Analysis by annexin V-propidium iodide double staining revealed that thrombin, specifically, promoted survival of serum-starved endothelial cells in a concentration-dependent manner. In contrast to its mitogenic effect, the anti-apoptotic effect of thrombin was largely independent of its catalytic activity and was mediated through interaction with alphanubeta3 and alpha5beta1 integrins, whereas the involvement of PAR1 was limited. These results provide new insights in understanding the role of thrombin in endothelial cell signaling and vascular biology.  相似文献   

8.
The control of cell and organ growth is fundamental to the development of multicellular organisms. Here, we show that dPTEN, a Drosophila homolog of the mammalian PTEN tumor suppressor gene, plays an essential role in the control of cell size, cell number, and organ size. In mosaic animals, dPTEN(-) cells proliferate faster than their heterozygous siblings, show an autonomous increase in cell size, and form organs of increased size, whereas overexpression of dPTEN results in opposite phenotypes. The loss-of-function phenotypes of dPTEN are suppressed by mutations in the PI3K target Dakt1 and the translational initiation factor eif4A, suggesting that dPTEN acts through the PI3K signaling pathway to regulate translation. Although activation of PI3K and Akt has been reported to increase rates of cellular growth but not proliferation, loss of dPTEN stimulates both of these processes, suggesting that PTEN regulates overall growth through PI3K/Akt-dependent and -independent pathways. Furthermore, we show that dPTEN does not play a major role in cell survival during Drosophila development. Our results provide a potential explanation for the high frequency of PTEN mutation in human cancer.  相似文献   

9.
The aim of this study was to determine whether the phosphatidylinositol 3-kinase (PI3K)-dependent mammalian target of rapamycin (mTOR)-eukaryotic initiation factor 4E binding protein 1 (4E-BP1) signal pathway and S6 kinase (S6K), the major element of the mTOR pathway, play a role in the enhanced vascular endothelial cell (EC) proliferation induced by cyclic strain. Bovine aortic ECs were subjected to an average of 10% strain at a rate of 60 cycles/min for < or =24 h. Cyclic strain-induced EC proliferation was reduced by pretreatment with rapamycin but not the MEK1 inhibitor PD-98059. The PI3K inhibitors wortmannin and LY-294002 also attenuated strain-induced EC proliferation and strain-induced activation of S6K. Rapamycin but not PD-98059 prevented strain-induced S6K activation, and PD-98059 but not rapamycin prevented strain-induced activation of extracellular signal-regulated kinases 1 and 2. Cyclic strain also activated 4E-BP1, which could be inhibited by PI3K inhibitors. These data suggest that the PI3K-dependent S6K-mTOR-4E-BP1 signal pathway may be critically involved in strain-induced bovine aortic EC proliferation.  相似文献   

10.
We examined Gas 6-Axl interactions in human pulmonary artery endothelial cells (HPAEC) and in Axl-transduced HPAEC to test Gas 6 function during endothelial cell survival. We identified the 5.0-kb Axl, 4.2-kb Rse, and 2.6-kb Gas 6 mRNAs in HPAEC. Immunoprecipitation and Western blotting confirmed the presence of these proteins. Gas 6 is present in cell-associated and secreted fractions of growth-arrested HPAEC, independent of cell density. In addition, the Axl receptor is constitutively phosphorylated in growth-arrested cultures, and exogenous Gas 6 enhanced Axl phosphorylation threefold. Gas 6 added to growth-arrested HPAEC resulted in a significant increase in cell number (1.5 nM Gas 6 increased cell number 35%). Flow cytometry revealed that Gas 6 treatment resulted in 28% fewer apoptosing cells. Transduction of a full-length Axl cDNA into HPAEC resulted in 54% fewer apoptosing cells after Gas 6 treatment. Collectively, the data demonstrate antiapoptotic activities for Gas 6 in HPAEC and suggest that Gas 6 signaling may be relevant to endothelial cell survival in the quiescent environment of the vessel wall.  相似文献   

11.
Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation.  相似文献   

12.
Retinal ischemia/reperfusion injury (IRI) plays a crucial role in the pathophysiology of various ocular diseases. Our previous study have shown that postconditioning with inhaled hydrogen (H2) (HPC) can protect retinal ganglion cells (RGCs) in a rat model of retinal IRI. Our further study aims to investigate potential mechanisms underlying HPC-induced protection. Retinal IRI was performed on the right eyes of rats and was followed by inhalation of 67% H2 mixed with 33% oxygen immediately after ischemia for 1?h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining, retrograde labelling with cholera toxin beta (CTB) and TUNEL staining, respectively. Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). The phosphorylated Akt was analysed by RT-PCR and western blot. The results showed that administration of HPC significantly inhibited the apoptosis of RGCs and protected the visual function. Simultaneously, HPC treatment markedly increased the phosphorylations of Akt. Blockade of PI3K activity by inhibitors (LY294002) dramatically abolished its anti-apoptotic effect and lowered both visual function and Akt phosphorylation levels.Taken together, our results demonstrate that HPC appears to confer neuroprotection against retinal IRI via the PI3K/Akt pathway.  相似文献   

13.
Glucagon-like peptide-1 (GLP-1) and its analogues have a beneficial role in cardiovascular system. Here, we aimed to investigate whether liraglutide, a GLP-1 analogue, modulated angiogenesis impaired by palmitic acid (PA) in cultured human umbilical vein endothelial cells (HUVECs). Cells were incubated with liraglutide (3–100 nmol/L) in the presence of PA (0.5 mmol/L), and endothelial tube formation was observed and quantified. The protein levels of signaling molecules were analyzed and the specific inhibitors were used to identify the signaling pathways through which liraglutide affected angiogenesis. Results showed that liraglutide ameliorated endothelial tube formation impaired by PA in HUVECs in a dose-dependent manner. Meanwhile, liraglutide increased the phosphorylation of Akt and forkhead box O1 (Foxo1), and upregulated the levels of guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and endothelial nitric oxide synthase (eNOS) in PA-impaired HUVECs. Notably, addition of the PI3K inhibitor LY294002, Foxo1 nuclear export inhibitor trifluoperazine dihydrochloride (TFP), GTPCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP) or NOS inhibitor N-nitro-l-arginine-methyl ester (L-NAME) eliminated the angiogenic effect of liraglutide. Moreover, either LY294002 or TFP abolished the liraglutide-induced upregulation of GTPCH1 and eNOS protein levels. In conclusion, liraglutide restores angiogenesis in PA-impaired HUVECs. The effect is mediated via upregulation of GTPCH1 and eNOS levels in a PI3K/Akt-Foxo1-dependent mechanism.  相似文献   

14.
Ko HM  Kang JH  Choi JH  Park SJ  Bai S  Im SY 《FEBS letters》2005,579(28):6451-6458
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of a variety of angiogenic factors, via the nuclear factor (NF)-kappaB activation. Recently, we reported that PAF upregulates MMP-9 expression in a NF-kappaB-dependent manner. In this study, we investigated the signaling pathway involved in PAF-induced MMP-9 expression in ECV304 cells. Our current data indicate that the Ca(2+)- or phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway is necessary for PAF-induced MMP-9 expression. Furthermore, PAF-induced NF-kappaB activation was blocked by selective inhibitors of Ca(2+), PI3K, or extracellular signal-regulated kinase (ERK). Our results suggest that PAF-induced MMP-9 expression, in a NF-kappaB-dependent manner, is regulated by Ca(2+), PI3K and ERK signaling pathways.  相似文献   

15.
16.
Angiopoietin-1 is a unique growth factor which induces Tie2 receptor autophosphorylation and interaction with signal transduction molecules, GRB2 and p85 subunit of PI 3-kinase, but no detectable mitogenic response. Here we show that PI 3-kinase-dependent activation of Akt and attachment to extracellular matrix are required for angiopoietin-1-mediated endothelial cell survival. Apoptosis of growth factor-deprived cells grown in monolayer was decreased by angiopoietin-1 and correlated with Akt activation. In contrast, angiopoietin-1, bFGF or VEGF failed to protect cells in suspension culture. Ceramide, an intermediate of several apoptotic pathways, interferes with growth factor-mediated Akt activation. Ceramide induced endothelial cell death and abolished angiopoietin-1-mediated activation of Akt and the effect on cell survival. In addition, we found that PI 3-kinase activity is necessary for migration of endothelial cells in response to Angiopoietin-1. A transient activation of MAPK/ERKs was also detected within 10 min after stimulation with angiopoietin-1. In contrast to VEGF-mediated biological effects, inhibition of MAPK/ERKs by PD98059 in endothelial cells did not affect angiopoietin-1 mediated survival or migration. These findings indicate significant differences in intracellular signaling between VEGF and angiopoietin-1 and that PI 3-kinase lipid products are key mediators of the biological effects of angiopoietin-1.  相似文献   

17.
Angiotensin-converting enzyme (ACE) plays an important role in the pathophysiology of cardiovascular disease. We investigated whether atorvastatin, a powerful agent for the prevention and treatment of cardiovascular disease, influences ACE production in endothelial cells. Human umbilical cord vein endothelial cells were treated with VEGF (476 pM), which induced ACE upregulation. Cotreatment with atorvastatin (0.1-10 microM) dose dependently inhibited VEGF-induced ACE upregulation. In the presence of mevalonate (100 microM), atorvastatin failed to downregulate VEGF-induced ACE production. Cotreatment of the cells with either farnesylpyrophosphate (FPP; 5 microM) or geranylgeranylpyrophosphate (GGPP; 5 microM) partially inhibited the suppressive effect of atorvastatin. Pretreatment of the cells with Rho-associated protein kinase inhibitor, Y-27632 (10 microM), partially inhibited VEGF-induced ACE upregulation. VEGF (476 pM) caused PKC phosphorylation, which was inhibited by cotreatment of the cells with atorvastatin. Atorvastatin inhibited VEGF-induced ACE upregulation probably by inhibiting PKC phosphorylation. This effect was mediated via inhibition of the mevalonate pathway. ACE downregulation may be an additional beneficial effect of statins in the treatment of cardiovascular disease.  相似文献   

18.
Hyperglycemia impacts retinal vascular function and promotes the development and progression of diabetic retinopathy, which ultimately results in growth of new blood vessels and loss of vision. How high glucose affects retinal endothelial cell (EC) properties requires further investigation. Here we determined the impact of high glucose on mouse retinal EC function in vitro. High glucose significantly enhanced the migration of retinal EC without impacting their proliferation, apoptosis, adhesion, and capillary morphogenesis. The enhanced migration of retinal EC under high glucose was reversed in the presence of the antioxidant N-acetylcysteine, suggesting increased oxidative stress under high-glucose conditions. Retinal EC under high-glucose conditions also expressed increased levels of fibronectin, osteopontin, and alpha(v)beta(3)-integrin, and reduced levels of thrombospondin-1. These changes were concomitant with sustained activation of the downstream prosurvival and promigratory signaling pathways, including Src kinase, phosphatidylinositol 3-kinase/Akt1/endothelial nitric oxide synthase, and ERKs. The sustained activation of these signaling pathways was essential for enhanced migration of retinal EC under high-glucose conditions. Together, our results indicate the exposure of retinal EC to high glucose promotes a promigratory phenotype. Thus alterations in the proangiogenic properties of retinal EC during diabetes may contribute to the development and pathogenesis of diabetic retinopathy.  相似文献   

19.
Gene alterations affecting elements of PI3K signaling pathway do not appear to be sufficient to explain the extremely high frequency of PI3K signaling hyperactivation in leukemia. It has been known for long that PTEN phosphorylation at the C-terminal tail, in particular by CK2, contributes to the stabilization and simultaneous inhibition of this critical tumor suppressor. However, direct evidence of the involvement of this mechanism in cancer has been gathered only recently. It is now known that CK2-mediated posttranslational, non-deleting, inactivation of PTEN occurs in T-ALL, CLL and probably other leukemias and solid tumors. To explore this knowledge for therapeutic purposes remains one of the challenges ahead.  相似文献   

20.
There are many orphan G protein-coupled receptors (GPCRs), for which ligands have not yet been identified, in both vertebrates and invertebrates, such as Drosophila melanogaster. Identification of their cognate ligands is critical for understanding the function and regulation of such GPCRs. Indeed, the discovery of bioactive peptides that bind GPCRs has enhanced our understanding of mechanisms underlying many physiological processes. Here, we identified an endogenous ligand of the Drosophila orphan GPCR, CG34381. The purified ligand is a peptide comprised of 28 amino acids with three intrachain disulfide bonds. The preprotein is coded for by gene CG14871. We designated the cysteine-rich peptide “trissin” (it means for triple S–S bonds) and characterized the structure of intrachain disulfide bonds formation in a synthetic trissin peptide. Because the expression of trissin and its receptor is reported to predominantly localize to the brain and thoracicoabdominal ganglion, trissin is expected to behave as a neuropeptide. The discovery of trissin provides an important lead to aid our understanding of cysteine-rich peptides and their functional interaction with GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号