首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

2.
3.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

4.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

5.
The structural protein elastin endows large arteries with unique biological functionality and mechanical integrity, hence its disorganization, fragmentation, or degradation can have important consequences on the progression and treatment of vascular diseases. There is, therefore, a need in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for the wall to those that account for separate contributions of the primary structural constituents: elastin, fibrillar collagens, smooth muscle, and amorphous matrix. In this paper, we employ a recently proposed constrained mixture model of the arterial wall and show that prestretched elastin contributes significantly to both the retraction of arteries that is observed upon transection and the opening angle that follows the introduction of a radial cut in an unloaded segment. We also show that the transmural distributions of elastin and collagen, compressive stiffness of collagen, and smooth muscle tone play complementary roles. Axial prestresses and residual stresses in arteries contribute to the homeostatic state of stress in vivo as well as adaptations to perturbed loads, disease, or injury. Understanding better the development of and changes in wall stress due to individual extracellular matrix constituents thus promises to provide considerable clinically important insight into arterial health and disease.  相似文献   

6.
7.
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing (distension) of excised porcine coronary arteries with simultaneous two-photon excited fluorescence and second-harmonic generation microscopy. Our results show that second-harmonic generation signals derived from collagen can be spectrally isolated from elastin and smooth muscle cell two-photon fluorescence. Two-photon fluorescence signals can be further characterized by emission maxima at 495 nm and 520 nm, corresponding to elastin and cellular contributions, respectively. Two-dimensional reconstructions of spectrally fused images permit high-resolution visualization of collagen and elastin fibrils and smooth muscle cells from intima to adventitia. These structural features are confirmed by coregistration of multiphoton microscopy images with conventional histology. Significant changes in mean fibril thickness and overall wall dimension were observed when comparing no load (zero transmural pressure) and zero-stress conditions to 30 and 180 mmHg distension pressures. Overall, these data suggest that multiphoton microscopy is a highly sensitive and promising technique for studying the morphometric properties of the microstructure of the blood vessel wall.  相似文献   

8.
Vessels remodel to compensate for increases in blood flow/pressure. The chronic exposure of blood vessels to increased flow and circulatory redox-homocysteine may injure vascular endothelium and disrupt elastic laminae. In order to understand the role of extracellular matrix (ECM) degradation in vascular structure and function, we isolated human vascular smooth muscle cells (VSMC) from normal and injured coronary arteries. The apparently normal vessels were isolated from explanted human hearts. The vessels were injured by inserting a blade into the lumen of the vessel, which damages the inner elastic laminae in the vessel wall and polarizes the VSMC by producing a pseudopodial phenotypic shift in VSMC. This shift is characteristic of migratory, invasive, and contractile nature of VSMC. We measured extracellular matrix metalloproteinases (MMPs), tissue plasminogen activator (tPA), tissue inhibitor of metalloproteinase (TIMP), and collagen I expression in VSMC by specific substrate zymography and Northern blot analyses. The injured and elastin peptide, val-gly-val-ala-pro-gly, treated VSMC synthesized active MMPs and reduced expression of TIMP. The level of tPA and collagen type I was induced in the injured, invasive VSMC and in the val-gly-val-ala-pro-gly treated cells. To demonstrate the angiogenic role of elastin peptide to VSMC we performed in vitro organ culture with rings from normal coronary artery. After 3 days in culture the vascular rings in the collagen gel containing elastin peptide elaborated MMP activity and sprouted and grew. The results suggest that val-gly-val-ala-pro-gly peptide generated at the site of proteolysis during vascular injury may have angiogenic activity.  相似文献   

9.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

10.
Extracellular matrix remodeling has been proposed as one mechanism by which proximal pulmonary arteries stiffen during pulmonary arterial hypertension (PAH). Although some attention has been paid to the role of collagen and metallomatrix proteins in affecting vascular stiffness, much less work has been performed on changes in elastin structure-function relationships in PAH. Such work is warranted, given the importance of elastin as the structural protein primarily responsible for the passive elastic behavior of these conduit arteries. Here, we study structure-function relationships of fresh arterial tissue and purified arterial elastin from the main, left, and right pulmonary artery branches of normotensive and hypoxia-induced pulmonary hypertensive neonatal calves. PAH resulted in an average 81 and 72% increase in stiffness of fresh and digested tissue, respectively. Increase in stiffness appears most attributable to elevated elastic modulus, which increased 46 and 65%, respectively, for fresh and digested tissue. Comparison between fresh and digested tissues shows that, at 35% strain, a minimum of 48% of the arterial load is carried by elastin, and a minimum of 43% of the change in stiffness of arterial tissue is due to the change in elastin stiffness. Analysis of the stress-strain behavior revealed that PAH causes an increase in the strains associated with the physiological pressure range but had no effect on the strain of transition from elastin-dominant to collagen-dominant behavior. These results indicate that mechanobiological adaptations of the continuum and geometric properties of elastin, in response to PAH, significantly elevate the circumferential stiffness of proximal pulmonary arterial tissue.  相似文献   

11.
Identification of a Strain Energy Function (SEF) is used when describing the complex mechanical properties of soft biological tissues such as the arterial wall. Classic SEFs, such as the one proposed by Chuong and Fung (J. Biomech. Eng. 105(3) (1983) 268), have been mostly phenomenological and neglect the particularities of the wall structure. A more structural model was proposed by Holzapfel et al. (J. Elasticity 61 (2000) 1-48.) when they included the characteristic angle at which the collagen fibers are helically wrapped, resulting in an excellent SEF for applications such as finite element modeling. We have expanded upon the idea of structural SEFs by including not only the wavy nature of the collagen but also the fraction of both elastin and collagen contained in the media, which can be determined by histology. The waviness of the collagen is assumed to be distributed log-logistically. In order to evaluate this novel SEF, we have used it to fit experimental data from inflation-extension tests performed on rat carotids. We have compared the results of the fit to the SEFs of Choung and Fung and Holzapfel et al. The novel SEF is found to behave similarly to that of Holzapfel et al., both succeed in describing the typical S-shaped pressure-radius curves with comparable quality of fit. The parameters of the novel SEF obtained from the fitting, bearing the physical meaning of the elastic modulus of collagen, the elastic modulus of elastin, the collagen waviness, and the collagen fiber angle, were compared to experimental data and discussed.  相似文献   

12.
Elastic and collagen fibers are well known to be the major load-bearing extracellular matrix (ECM) components of the arterial wall. Studies of the structural components and mechanics of arterial ECM generally focus on elastin and collagen fibers, and glycosaminoglycans (GAGs) are often neglected. Although GAGs represent only a small component of the vessel wall ECM, they are considerably important because of their diverse functionality and their role in pathological processes. The goal of this study was to study the mechanical and structural contributions of GAGs to the arterial wall. Biaxial tensile testing was paired with multiphoton microscopic imaging of elastic and collagen fibers in order to establish the structure–function relationships of porcine thoracic aorta before and after enzymatic GAG removal. Removal of GAGs results in an earlier transition point of the nonlinear stress–strain curves \((p<0.05)\). However, stiffness was not significantly different after GAG removal treatment, indicating earlier but not absolute stiffening. Multiphoton microscopy showed that when GAGs are removed, the adventitial collagen fibers are straighter, and both elastin and collagen fibers are recruited at lower levels of strain, in agreement with the mechanical change. The amount of stress relaxation also decreased in GAG-depleted arteries \((p<0.05)\). These findings suggest that the interaction between GAGs and other ECM constituents plays an important role in the mechanics of the arterial wall, and GAGs should be considered in addition to elastic and collagen fibers when studying arterial function.  相似文献   

13.
Understanding the mechanical behaviour of arterial tissue is vital to the development and analysis of medical devices targeting diseased vessels. During angioplasty and stenting, stress softening and permanent deformation of the vessel wall occur during implantation of the device, however little data exists on the inelastic behaviour of cardiovascular tissue and how this varies through the arterial tree. The aim of this study was to characterise the magnitude of stress softening and inelastic deformations due to loading throughout the arterial tree and to investigate the anisotropic inelastic behaviour of the tissue. Cyclic compression tests were used to investigate the differences in inelastic behaviour for carotid, aorta, femoral and coronary arteries harvested from 3-4 month old female pigs, while the anisotropic behaviour of aortic and carotid tissue was determined using cyclic tensile tests in the longitudinal and circumferential directions. The differences in inelastic behaviour were correlated to the ratio of collagen to elastin content of the arteries. It was found that larger inelastic deformations occurred in muscular arteries (coronary), which had a higher collagen to elastin ratio than elastic arteries (aorta), where the smallest inelastic deformations were observed. Lower magnitude inelastic deformations were observed in the circumferential tensile direction than in the longitudinal tensile direction or due to radial compression. This may be as a result of non-collagenous components in the artery becoming more easily damaged than the collagen fibres during loading. Stress softening was also found to be dependent on artery type. In the future, computational models should consider such site dependant, anisotropic inelastic behaviour in order to better predict the outcomes of interventional procedures such as angioplasty and stenting.  相似文献   

14.
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM—mainly the elastic fiber matrix—in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.  相似文献   

15.
Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN(+/-)) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN(+/-) mice have a normal life span, suggesting that the arteries remodel and adapt to the decreased amount of elastin. To test this hypothesis, we performed in vitro mechanical tests on abdominal aorta, ascending aorta, and left common carotid artery from ELN(+/-) and wild-type (C57BL/6J) mice. We compared the circumferential and longitudinal stress-stretch relationships and residual strains. The circumferential stress-stretch relationship is similar between genotypes and changes <3% with longitudinal stretch at lengths within 10% of the in vivo value. At mean arterial pressure, the circumferential stress in the ascending aorta is higher in ELN(+/-) than in wild type. Although arterial pressures are higher, the increased number of elastic lamellae in ELN(+/-) arteries results in similar tension/lamellae compared with wild type. The longitudinal stress-stretch relationship is similar between genotypes for most arteries. Compared with wild type, the in vivo longitudinal stretch is lower in ELN(+/-) abdominal and carotid arteries and the circumferential residual strain is higher in ELN(+/-) ascending aorta. The increased circumferential residual strain brings the transmural strain distribution in ELN(+/-) ascending aorta close to wild-type values. The mechanical behavior of ELN(+/-) arteries is likely due to the reduced elastin content combined with adaptive remodeling during vascular development.  相似文献   

16.
The aim of the present work was to study the morphological implications between the elastin and the phenotypic expression of the vascular smooth muscle cells. For this purpose, sixty human tortuous arteries from different territories have been studied. We have measured the morphometric indexes Intimal Thickening Index and Elastolyse Index and they have been quantified with computer system analysis, image-colour corresponding to the orcein and Verho?ff reactions for detecting elastin and the alpha-actin in the smooth muscle cells. We compared both territorial arteries from the cranial and from abdominal origin. The elastin concentration was similar in both territories, but not its morphology according to its spatial distribution. We have observed a relationship between the elastin structural organisation from the media of arteries and of the internal elastic lamina in these territories and the variation of reactivity to the smooth muscle alpha-actin as a marker of the phenotypic state. Our results confirm the hypothesis that elastin, besides intervening in the architecture of the arterial wall, is a factor implicated in the phenotypic variability of the smooth muscle cells and in the development and evolution of the intimal thickenings in human atherosclerosis.  相似文献   

17.
Pressure-volume characteristics of the lung have been thought to be due primarily to the properties of the network of alveolar septa. However, Hajji et al. (J. Appl. Physiol.: Respirat . Environ. Exercise Physiol. 47: 175-181, 1979) attributed a substantial role to the visceral pleura. Seeking a structural explanation for this result, we compared the relative amounts of collagen fibrils and elastin fibers in the visceral pleura and alveolar parenchyma using stereological measurements in five canine lobes. We found about one-fifth as much collagen and one-tenth as much elastin in the pleura as in the alveolar parenchyma. This structural result confirms the functional conclusions of Hajji et al. We argue that such a substantial structure is not needed for protection against overinflation but may have to do with stabilization of lobe shape or handling of frictional forces.  相似文献   

18.
19.
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG.  相似文献   

20.
Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号