首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of the competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) to the aminopeptidase from Aeromonas proteolytica (AAP) was examined by both spectroscopic and crystallographic methods. Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], and [ZnCo(AAP)] enzymes recorded in the presence of bestatin revealed that both of the divalent metal ions in AAP are involved in binding bestatin. The electron paramagnetic resonance (EPR) spectrum of the [CoCo(AAP)]-bestatin complex exhibited no observable perpendicular- or parallel-mode signal. These data indicate that the two Co(II) ions in AAP are antiferromagnetically coupled yielding an S = 0 ground state and suggest that a single oxygen atom bridges between the two divalent metal ions. The EPR data obtained for [CoZn(AAP)] and [ZnCo(AAP)] confirm that bestatin interacts with both metal ions. The X-ray crystal structure of the [ZnZn(AAP)]-bestatin complex was solved to 2.0 A resolution. Both side chains of bestatin occupy a well-defined hydrophobic pocket that is adjacent to the dinuclear Zn(II) active site. The amino acid residues ligated to the dizinc(II) cluster in AAP are identical to those in the native structure with only minor perturbations in bond length. The alkoxide oxygen of bestatin bridges between the two Zn(II) ions in the active site, displacing the bridging water molecule observed in the native [ZnZn(AAP)] structure. The M-M distances observed in the AAP-bestatin complex and native AAP are identical (3.5 A) with alkoxide oxygen atom distances of 2.1 and 1.9 A from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen atom of bestatin is coordinated to Znl at a distance of 2.3 A. In addition, the NH(2) group of bestatin, which mimics the N-terminal amine group of an incoming peptide, binds to Zn2 with a bond distance of 2.3 A. A combination of the spectroscopic and X-ray crystallographic data presented herein with the previously reported mechanistic data for AAP has provided additional insight into the substrate-binding step of peptide hydrolysis as well as insight into important small molecule features for inhibitor design.  相似文献   

2.
Human aminopeptidase N (hAPN/hCD13) is a dimeric membrane protein and a member of the M1 family of zinc metallopeptidases. Within the rennin-angiotensin system, its enzymatic activity is responsible for processing peptide hormones angiotensin III and IV. In addition, hAPN is also involved in cell adhesion, endocytosis, and signal transduction and it is an important target for cancer therapy. Reported here are the high resolution x-ray crystal structures of the dimeric ectodomain of hAPN and its complexes with angiotensin IV and the peptidomimetic inhibitors, amastatin and bestatin. Each monomer of the dimer is found in what has been termed the closed form in other M1 enzymes and each monomer is characterized by an internal cavity surrounding the catalytic site as well as a unique substrate/inhibitor-dependent loop ordering, which in the case of the bestatin complex suggests a new route to inhibitor design. The hAPN structure provides the first example of a dimeric M1 family member and the observed structural features, in conjunction with a model for the open form, provide novel insights into the mechanism of peptide processing and signal transduction.  相似文献   

3.
Vertebrate leukotriene A4 hydrolases are bifunctional zinc metalloenzymes with an epoxide hydrolase and an aminopeptidase activity. In contrast, highly homologous enzymes from lower organisms only have the aminopeptidase activity. From sequence comparisons, it is not clear why this difference occurs. In order to obtain more information on the evolutionary relationship between these enzymes and their activities, the structure of a closely related leucine aminopeptidase from Saccharomyces cerevisiae that only shows a very low epoxide hydrolase activity was determined. To investigate the molecular architecture of the active site, the structures of both the native protein and the protein in complex with the aminopeptidase inhibitor bestatin were solved. These structures show a more spacious active site, and the protected cavity in which the labile substrate leukotriene A4 is bound in the human enzyme is partially obstructed and in other parts is more solvent accessible. Furthermore, the enzyme undergoes induced fit upon binding of the inhibitor bestatin, leading to a movement of the C-terminal domain. The main triggers for the domain movement are a conformational change of Tyr312 and a subtle change in backbone conformation of the PYGAMEN fingerprint region for peptide substrate recognition. This leads to a change in the hydrogen-bonding network pulling the C-terminal domain into a different position. Inasmuch as bestatin is a structural analogue of a leucyl dipeptide and may be regarded as a transition state mimic, our results imply that the enzyme undergoes induced fit during substrate binding and turnover.  相似文献   

4.
A dose‐dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl‐L‐lysine chloromethyl ketone‐HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane‐bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross‐class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross‐class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Aminopeptidases catalyze the hydrolysis of amino acid residues from the amino terminus of peptide substrates. They are found in most cells and tissues, and their activity has been implicated in myriad fundamental biochemical and physiological processes. Nevertheless, little is known about the structure of the aminopeptidase active sites. Beef lens leucine aminopeptidase (blLAP) can be considered prototypical of many enzymes in this family of peptidases. Bestatin, [(2S,3R)-(3-amino-2-hydroxy-4-phenyl-butanoyl)-L-leucine] is a nonhydrolyzable substrate analogue of a peptide, PheLeu, which is rapidly cleaved by blLAP. Bestatin incorporates elements of the putative tetrahedral intermediate, and this results in a greater than 10(5)-fold enhancement of binding relative to analogous peptides. Bestatin is the most tightly bound inhibitor of many aminopeptidases. Bestatin was successively converted to nitrobestatin, p-aminobestatin, [3H]-p-aminobestatin, and finally [3H]-p-azidobestatin (pAB). Like bestatin, pAB is a slow binding inhibitor of LAP (Ki*, the dissociation constant for the final complex, = approximately 4 x 10(-9); Ki, the dissociation constant for the initial collision complex, = approximately 10(-8). The t1/2 for binding of 2 x 10(-8) M and 8 x 10(-8) M bestatin are approximately 60 min and approximately 38 min, respectively. pAB, nitrobestatin, bestatin, and physiological peptides appear to bind in the same site, the first three with similar avidity. In the dark, pAB and bestatin protect low concentrations of the enzyme against inactivation upon extensive dialysis. The t1/2 for photoactivation of pAB is approximately 3 s. Irradiation of blLAP for such short periods of time resulted in insignificant change in activity. blLAP which was placed in 254-nm light in the presence of pAB was inactivated significantly. Treatment of photolabeled blLAP with trypsin produces only two peptides. Autoradiography and scintillation counting indicate that the active site is in the peptide which includes residues 138-487. Treatment of the same blLAP with hydroxylamine produces two different peptides, with the active site in the peptide 323-487. This indicates that the active site is in the carboxyl-terminal one-third of the protomer. It is likely that this photoaffinity label will be useful in identifying active sites in other aminopeptidases as well.  相似文献   

6.
During the erythrocytic stage of its life cycle, the human malaria parasite Plasmodium falciparum catabolizes large quantities of host-cell hemoglobin in an acidic organelle, the food vacuole. A current model for the catabolism of globin-derived oligopeptides invokes peptide transport out of the food vacuole followed by hydrolysis to amino acids by cytosolic aminopeptidases. To test this model, we have examined the roles of four parasite aminopeptidases during the erythrocytic cycle. Localization of tagged aminopeptidases, coupled with biochemical analysis of enriched food vacuoles, revealed the presence of amino acid-generating pathways in the food vacuole as well as the cytosol. Based on the localization data and in vitro assays, we propose a specific role for one of the plasmodial enzymes, aminopeptidase P, in the catabolism of proline-containing peptides in both the vacuole and the cytosol. We establish an apparent requirement for three of the four aminopeptidases (including the two food vacuole enzymes) for efficient parasite proliferation. To gain insight into the impact of aminopeptidase inhibition on parasite development, we examined the effect of the presence of amino acids in the culture medium of the parasite on the toxicity of the aminopeptidase inhibitor bestatin. The ability of bestatin to block parasite replication was only slightly affected when 19 of 20 amino acids were withdrawn from the medium, indicating that exogenous amino acids cannot compensate for the loss of aminopeptidase activity. Together, these results support the development of aminopeptidase inhibitors as novel chemotherapeutics directed against malaria.  相似文献   

7.
C Gros  B Giros  J C Schwartz 《Biochemistry》1985,24(9):2179-2185
Two membrane-bound enkephalin-hydrolyzing aminopeptidase activities were partially purified from rat brain membranes. The first, which represents 90% of the total activity, was highly sensitive to both puromycin (Ki = 1 microM) and bestatin (Ki = 0.5 microM). The second was inhibited much more by bestatin (Ki = 4 microM) than by puromycin (Ki = 100 microM). The latter puromycin-insensitive aminopeptidase was found to resemble aminopeptidase M purified from rat kidney brush border membranes. Both displayed the same purification pattern and the same kinetic constants of substrates and inhibitors, and both were similarly inactivated by metal chelating agents. Moreover, antibodies raised in rabbits against rat kidney aminopeptidase M inhibited the aminopeptidase activities of both kidney and brain puromycin-insensitive enzymes at similar dilutions, while the brain puromycin-sensitive aminopeptidase activity was not affected. Thus, aminopeptidase M (EC 3.4.11.2) was found to occur in brain, and the role of this enzyme in inactivating endogenous enkephalins released from their neuronal stores is suggested.  相似文献   

8.
Abstract: A variety of bestatin analogs were examined as potent inhibitors of a membrane-bound enkephalin-degrading aminopeptidase that was purified from monkey brain. Bestatinyl amino acid derivatives showed strong inhibition of this enzyme. The most effective was bestatin- l -Arg AcOH, with a K i value of 0.21 × 10−8 M with Leu-enkephalin as substrate. It exhibited competitive kinetics and was about 100-fold more potent than bestatin. This compound seems to be useful for pharmacological and other studies.  相似文献   

9.
"Suicide" inactivation of leukotriene (LT) A4 hydrolase/aminopeptidase occurs via an irreversible mechanism-based process which is saturable, of pseudo firstorder, and dependent upon catalysis. Data obtained with either recombinant enzyme or enzyme purified from human leukocytes were similar. Apparent binding constants and inactivation rate constants are equivalent, compatible with a single type of substrate-enzyme complex which partitions between two fates, turnover and inactivation. Both catalytic functions are inactivated, consistent with an overlapping active site for this bifunctional enzyme. The partition ratio (turnover/inactivation) for the LTA4-enzyme complex is 129 +/- 16 for LTA4 hydrolase activity and 124 +/- 10 for aminopeptidase activity. The pH dependence for turnover and inactivation are indistinguishable with a maximum at pH 8. L-Proline p-nitroanilide, a weak substrate with a high Km for the aminopeptidase affords only partial protection against inactivation by LTA4. However, two potent competitive inhibitors, bestatin and captopril, protect both catalytic processes from inactivation, consistent with an active-site specificity for the suicide event. Electrospray ionization mass spectrometry indicates that the molecular weight of pure recombinant enzyme is 69,399 +/- 4 and that covalent modification accompanies catalysis, producing an LTA4:enzyme adduct with a molecular weight 69,717 +/- 4 and a 1:1 stoichiometry. In agreement with kinetic data, electrospray ionization mass spectrometry shows that bestatin inhibits the covalent modification of enzyme by LTA4 and that the extent of modification is proportional to the loss of enzymatic activity.  相似文献   

10.
The first crystallographic structure of an N-hydroxyurea inhibitor bound into the active site of a matrix metalloproteinase is reported. The ligand and three other analogues were prepared and studied as inhibitors of MMP-2, MMP-3, and MMP-8. The crystal structure of the complex with MMP-8 shows that the N-hydroxyurea, contrary to the analogous hydroxamate, binds the catalytic zinc ion in a monodentate rather than bidentate mode and with high out-of-plane distortion of the amide bonds.  相似文献   

11.
Leukotriene (LT) A(4) hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc enzyme that catalyzes the biosynthesis of LTB4, a potent lipid chemoattractant involved in inflammation, immune responses, host defense against infection, and PAF-induced shock. The high resolution crystal structure of LTA4H in complex with the competitive inhibitor bestatin reveals a protein folded into three domains that together create a deep cleft harboring the catalytic Zn(2+) site. A bent and narrow pocket, shaped to accommodate the substrate LTA(4), constitutes a highly confined binding region that can be targeted in the design of specific anti-inflammatory agents. Moreover, the structure of the catalytic domain is very similar to that of thermolysin and provides detailed insight into mechanisms of catalysis, in particular the chemical strategy for the unique epoxide hydrolase reaction that generates LTB(4).  相似文献   

12.
Abstract Recent work in our laboratory indicates that selected protease/peptidase inhibitors interfere with the growth of Porphyromonas gingivalis . The aim of the present study was to further investigate the inhibitory effect of bestatin on the growth of P. gingivalis . Complete growth inhibition of P. gingivalis (11 strains) was observed when bestatin was incorporated at 2.5 μg ml−1 in a complex broth medium. Fifty percent inhibition was still obtained with bestatin at a final concentration of 0.5 μg ml−1. The inhibitory effect of bestatin was highly specific as the growth of 20 different oral bacterial species, including Gram-positive and Gram-negative as well as saccharolytic and asacharolytic bacteria, was not affected even at bestatin concentrations up to 50 μg ml−1. Bestatin did not significantly affect the viability of P. gingivalis indicating that it has a bacteriostatic rather than a bactericidal effect. Growth assays using other specific inhibitors suggested that the effect of bestatin on the growth of P. gingivalis was unlikely to be related to its aminopeptidase inhibitor activity. Cultivation of P. gingivalis with a subinhibitory concentration of bestatin did not modify the cell envelope protein profile, as determined by SDS-PAGE analysis, but significantly decreased the number of extracellular vesicles produced. The present study indicated that bestasin is a highly effective inhibitor of cell growth of P. gingivalis . Additional studies will indicate whether bestatin should be considered as a potential drug in the control of P. gingivalis , a suspected pathogen in adult chronic periodontitis.  相似文献   

13.
A novel, general, and versatile method of diversification of the P1' position in phosphinic pseudodipeptides, presumable inhibitors of proteolytic enzymes, was elaborated. The procedure was based on parallel derivatization of the amino group in the suitably protected phosphinate building blocks with appropriate alkyl and aryl halides. This synthetic strategy represents an original approach to phosphinic dipeptide chemistry. Its usefulness was confirmed by obtaining a series of P1' modified phosphinic dipeptides, inhibitors of cytosolic leucine aminopeptidase, through computer-aided design basing on the structure of homophenylalanyl-phenylalanine analogue (hPheP[CH(2)]Phe) bound in the enzyme active site as a lead structure. In this approach novel interactions between inhibitor P1' fragment and the S1' region of the enzyme, particularly hydrogen bonding involving Asn330 and Asp332 enzyme residues, were predicted. The details of the design, synthesis, and activity evaluation toward cytosolic leucine aminopeptidase and aminopeptidase N are discussed. Although the potency of the lead compound has not been improved, marked selectivity of the synthesized inhibitors toward both studied enzymes was observed.  相似文献   

14.
Pregnant Wistar rats were injected with bestatin, a specific inhibitor of aminopeptidase M. Placental aminopeptidase M activity was inhibited by injection of bestatin, and fetal body weight was statistically lower than that in the saline-injected or control group. Our present data suggest that placental aminopeptidase M plays an important role in fetal growth.  相似文献   

15.
Streptomyces griseus aminopeptidase (SGAP) is a double-zinc exopeptidase with a high preference toward large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X-ray crystallographic analysis of the SGAP complexes with methionine (1.53 A resolution), leucine (1.70 A resolution), and phenylalanine (1.80 A resolution). These three high-resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme-substrate and enzyme-product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme-substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc-bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP.  相似文献   

16.
The slow, tight binding of bestatin and amastatin to aminopeptidases   总被引:5,自引:0,他引:5  
Bestatin reversibly inhibits Aeromonas aminopeptidase (EC 3.4.11.10) in a process that is remarkable for its unusual degree of time dependence. The binding of bestatin by both Aeromonas aminopeptidase and cytosolic leucine aminopeptidase (EC 3.4.11.1) is slow and tight, with Ki values (determined from rate constants) of 1.8 X 10(-8) and 5.8 X 10(-10) M, respectively. In contrast, microsomal aminopeptidase (EC 3.4.11.2) binds bestatin in a rapidly reversible process with a Ki value of 1.4 X 10(-6) M. Kinetic analysis of the slow inhibition observed is facilitated by the use of a variety of experimental treatments, primarily measurements made during pre-equilibrium; however, careful selection of conditions permits use also of steady state observations. When titrated with bestatin, 1 mol of cytosolic leucine aminopeptidase (containing 6 g atoms each of zinc and manganese) is rendered 80% inactive by 1 mol of inhibitor, thus suggesting that enzymatic activity depends on one active site/hexamer; titration of Aeromonas aminopeptidase by bestatin reveals a 1:1 stoichiometry. Amastatin inhibits all three aminopeptidases through the mechanism of slow, tight binding with Ki values ranging from 3.0 X 10(-8) to 2.5 X 10(-10) M. This behavior of microsomal aminopeptidase contrasts sharply with its rapidly reversible inhibition by bestatin. The slow, tight binding observed with five of the six aminopeptidase-inhibitor pairs investigated suggests the formation of a transition state analog complex between the enzyme and inhibitor. Physical evidence consistent with this possibility was provided by the observation that both bestatin and amastatin perturb the absorption spectrum of cobalt Aeromonas aminopeptidase.  相似文献   

17.
We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and β-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than typical native enzyme–inhibitor complexes. Alanine scanning of the active-site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analog that lacks naphthyl ring shows the catalytic lysine to be more flexible than in the naphthyl–substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight the strengths and weaknesses of the de novo enzyme design strategy.  相似文献   

18.
Cysticercosis is caused by Taenia spp. metacestodes, which must survive in the host tissues to complete their life cycle. Their survival depends on their control of host immune responses. Because many parasites use proteases to modulate host responses, we examined culture media from Taenia crassiceps metacestodes for protease activity using peptide substrates. We identified prominent aminopeptidase activity at neutral pH, which was inhibited by chelating agents and partially inhibited by the aminopeptidase inhibitor, bestatin. Endopeptidase substrates were optimally cleaved at slightly acidic pH and endopeptidase activity was inhibited by cysteine protease inhibitors. Gel filtration FPLC and subsequent visualization by silver staining revealed a metallo-aminopeptidase of molecular weight 21 kDa and cysteine proteases of Mr 70 and 64 kDA. Recombinant IL-2 was digested when incubated with parasite culture supernatants, but not with control media. IL-2 degradation was completely inhibited by 1,10 phenanthroline and partially inhibited by bestatin, suggesting that a metallo-aminopeptidase was responsible. Incubation of human IgG with culture supernatants resulted in complete degradation of IgG, which was blocked by cysteine protease inhibitors. These observations demonstrate that Taenia spp. metacestodes secrete a number of proteolytic enzymes, which may target molecules from the host immune system and assist in evasion of the host immune response.  相似文献   

19.
Hydroxymethylglutaryl-CoA (HMG-CoA) reductase is the primary target in the current clinical treatment of hypercholesterolemias with specific inhibitors of the "statin" family. Statins are excellent inhibitors of the class I (human) enzyme but relatively poor inhibitors of the class II enzymes of important bacterial pathogens. To investigate the molecular basis for this difference we determined the x-ray structure of the class II Pseudomonas mevalonii HMG-CoA reductase in complex with the statin drug lovastatin. The structure shows lovastatin bound in the active site and its interactions with residues critically involved in catalysis and substrate binding. Binding of lovastatin also displaces the flap domain of the enzyme, which contains the catalytic residue His-381. Comparison with the structures of statins bound to the human enzyme revealed a similar mode of binding but marked differences in specific interactions that account for the observed differences in affinity. We suggest that these differences might be exploited to develop selective class II inhibitors for use as antibacterial agents against pathogenic microorganisms.  相似文献   

20.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号