首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper, we present a new concept of the mechanical design of a humanoid robot. The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characteristics of the knee stretch, heel-contact, and toe-off. Inspired by human skeleton, we made an anthropomorphic pelvis for the humanoid robot. In comparison with conventional humanoid robots, with such the anthropomorphic pelvis, our robot is capable of adjusting the center of gravity of the upper body by the motion of pelvic tilt, thus reducing the required torque at the ankle joint and the velocity variations in human-like walking. With more precise analysis of the foot mechanism, the fixed-length inverted pendulum can be used to describe the dynamics of biped walking, thus preventing redundant works and power consumption in length variable inverted pendulum system. As the result of the new structure we propose, a humanoid robot is able to walk with human-like gait.  相似文献   

2.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

3.
Robot locomotion is an active research area. In this paper we focus on the locomotion of quadruped robots. An effective walking gait of quadruped robots is mainly concerned with two key aspects, namely speed and stability. The large search space of potential parameter settings for leg joints means that hand tuning is not feasible in general. As a result walking parameters are typically determined using machine learning techniques. A major shortcoming of using machine learning techniques is the significant wear and tear of robots since many parameter combinations need to be evaluated before an optimal solution is found.This paper proposes a direct walking gait learning approach, which is specifically designed to reduce wear and tear of robot motors, joints and other hardware. In essence we provide an effective learning mechanism that leads to a solution in a faster convergence time than previous algorithms. The results demonstrate that the new learning algorithm obtains a faster convergence to the best solutions in a short run. This approach is significant in obtaining faster walking gaits which will be useful for a wide range of applications where speed and stability are important. Future work will extend our methods so that the faster convergence algorithm can be applied to a two legged humanoid and lead to less wear and tear whilst still developing a fast and stable gait.  相似文献   

4.
Energy efficiency is important in the performance of quadruped robots and mammals.Flexible spine motion generally exists in quadruped mammals.This paper mainly explores the effect of flexible spinal motion on energy efficiency.Firstly,a planar simplified model of the quadruped robot with flexible spine motion is introduced and two simulation experiments are carried out.The results of simulation experiments demonstrate that both spine motion and spinal flexibility can indeed increase energy efficiency,and the curve of energy efficiency change along with spinal stiffness is acquired.So,in order to obtain higher energy efficiency,quadruped robots should have flexible spine motion.In a certain speed,there is an optimal spinal stiffness which can make energy efficiency to be the best.Secondly,a planar quadruped robot with flexible spine motion is designed and the conclusions drawn in the two simulation experiments are verified.Lastly,the third simulation experiment is carried out to explore the relationship between the optimal spinal stiffness,speed and total mass.The optimal spinal stiffness increases with both speed and total mass,which has important guiding significance for adjusting the spinal stiffness of quadruped robots to make them reach the best energy efficiency.  相似文献   

5.
In this paper, an experimental analysis of overcoming obstacle in human walking is carried out by means of a motion capture system. In the experiment, the lower body of an adult human is divided into seven segments, and three markers are pasted to each segment with the aim to obtain moving trajectory and to calculate joint variation during walking. Moreover, kinematic data in terms of displacement, velocity and acceleration are acquired as well. In addition, ground reaction forces are measured using force sensors. Based on the experimental results, features of overcoming obstacle in human walking are ana- lyzed. Experimental results show that the reason which leads to smooth walking can be identified as that the human has slight movement in the vertical direction during walking; the reason that human locomotion uses gravity effectively can be identified as that feet rotate around the toe joints during toe-off phase aiming at using gravitational potential energy to provide propulsion for swing phase. Furthermore, both normal walking gait and obstacle overcoming gait are characterized in a form that can provide necessary knowledge and useful databases for the implementation of motion planning and gait planning towards overcoming obstacle for humanoid robots.  相似文献   

6.
This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.  相似文献   

7.
Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait   总被引:1,自引:0,他引:1  
Legged robots have better performance on discontinuous terrain than that of wheeled robots. However, the dynamic trotting and balance control of a quadruped robot is still a challenging problem, especially when the robot has multi-joint legs. This paper presents a three-dimensional model of a quadruped robot which has 6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg. On the basis of the Spring-Loaded Inverted Pendulum (SLIP) model, body control algorithm is discussed in the first place to figure out how legs work in 3D trotting. Then, motivated by the principle of joint function separation and introducing certain biological characteristics, two joint coordination approaches are developed to produce the trot and provide balance. The robot reaches the highest speed of 2.0 m.s-1, and keeps balance under 250 Kg.m.s-1 lateral disturbance in the simulations. The effectiveness of these approaches is also verified on a prototype robot which runs to 0.83 m.s-1 on the treadmill, The simulations and experiments show that legged robots have good biological properties, such as the ground reaction force, and spring-like leg behavior.  相似文献   

8.
This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs).A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait,which can drive the robot to run with desired gait.To determine VCs for highly dynamic bounding gait,the limit cycle motions of the passive dynamic model of bounding gait are analyzed.The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials.In order to track the calculated periodic motions,the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller.A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability.The control approach was applied to a newly designed lightweight bioinspired quadruped robot,AgiDog.The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s-1 in sagittal plane with a Froude number approximating to 1.  相似文献   

9.
Legged robots relying on dry adhesives for vertical climbing are required to preload their feet against the wall to increase contact surface area and consequently maximize adhesion force. Preloading a foot causes a redistribution of forces in the entire robot, including contact forces between the other feet and the wall. An inappropriate redistribution of these forces can cause irreparable detachment of the robot from the vertical surface. This paper investigates an optimal preloading and detaching strategy that minimizes energy consumption, while retaining safety, during locomotion on vertical surfaces. The gait of a six-legged robot is planned using a quasi-static model that takes into account both the structure of the robot and the characteristics of the adhesive material. The latter was modelled from experimental data collected for this paper. A constrained optimization routine is used, and its output is a sequence of optimal posture and motor torque set-points.  相似文献   

10.
Most quadruped reptiles,such as lizards,salamanders and crocodiles,swing their waists while climbing on horizontal or vertical surfaces.Accompanied by body movement,the centroid trajectory also becomes more of a zigzag path rather than a straight line.Inspired by gecko's gait and posture on a vertical surface,a gecko inspired model with one pendular waist and four active axil legs,which is called GPL model,is proposed.Relationship between the waist position,dynamic gait,and driving forces on supporting feet is analyzed.As for waist trajectory planning,a singular line between the supporting feet is found and its effects on driving forces are discussed.Based on the GPL model,it is found that a sinusoidal waist trajectory,rather than a straight line,makes the driving forces on the supporting legs smaller.Also,a waist close to the pygal can reduce the driving forces compared to the one near middle vertebration,which is in accord with gecko's body bending in the process of climbing.The principles of configuration design and gait planning are proposed based on theoretical analyses.Finally,a bio-inspired robot DracoBot is developed and both of the driving force measurements and climbing experiments reinforce theoretical analysis and the rationality of gecko's dynamic gait.  相似文献   

11.
Efficient walking is one of the main goals of research on biped robots.Passive Dynamics Based Walking (PDBW) has been proven to be an efficient pattern in numerous previous approaches to 2D biped walking.The goal of this study is to develop a feasible method for the application of PDBW to 3D robots.First a hybrid control method is presented,where a previously proposed two-point-foot walking pattern is employed to generate a PDBW gait in the sagittal plane and,in the frontal plane,a systematic balance control algorithm is applied including online planning of the landing point of the swing leg and feedback control of the stance foot.Then a multi-space planning structure is proposed to implement the proposed method on a 13-link 3D robot.Related kinematics and planning details of the robot are presented.Furthermore,a simulation of the 13-link biped robot verifies that stable and highly efficient walking can be achieved by the proposed control method.In addition,a number of features of the biped walking,including the transient powers and torques of the joints are explored.  相似文献   

12.
Robots play an important role in underwater monitoring and recovery operations, such as pollution detection, submarine sampling and data collection, video mapping, and object recovery in dangerous places. However, regular-sized robots may not be suitable for applications in some restricted underwater environments. Accordingly, in previous research we designed several novel types of bio-inspired microrobots using Ionic Polymer Metal Composite (IPMC) and Shape Memory Alloy (SMA) ac- tuators. These microrobots possess some attributes of compact structure, multi-functionality, flexibility, and precise positioning. However, they lack the attributes of long endurance, stable high speed, and large load capacity necessary for real-world appli- cations. To overcome these disadvantages, we proposed a mother-son robot system, composed of several microrobots as sons and a newly designed amphibious spherical robot as the mother. Inspired by amphibious turtles, the mother robot was designed with a spherical body and four legs with two Degrees of Freedom (DOF). It is actuated by four vectored water-jet propellers and ten servomotors, and it is capable of walking on land and cruising underwater. We analysed the mother robot's walking and underwater cruising mechanisms, constructed a prototype, and carried out a series of experiments to evaluate its amphibious motions. Good motion performance was observed in the experiments.  相似文献   

13.
In this paper, a biped water running robot is developed by mimicking the water-running pattern of basilisk lizards. The dynamic mechanism of the robot was studied based on Watt-I planar linkages, and the movement trajectory of the double bar Assur Group was deduced to simulate the water-running foot trajectories of the basilisk lizard. A Central Pattern Generator (CPG)-based fuzzy control method was proposed to control the robot for realizing balance control and gait adjustment. The effectiveness of the proposed control method was verified on the prototype of a water running robot (weight: 320 g). When the biped robot is running on water, the average force generated by the propulsion mechanism is 1.3 N, and the robot body tilt angle is 5~. The experiment results show that the propulsion mechanism is effective in realizing the basilisk lizards-like water running patterns, and the CPG-based fuzzy control method is effective in keeping the balance of the robot.  相似文献   

14.
Recently, various kinds ofbiomimetic robots have been studied. Among these biomimetic robots, water-running robots that mimic the characteristics of basilisk lizards have received much attention. However, studies on the performance with respect to different geometric parameters and gaits have been lacking. To run on the surface of water, a water-running robot needs suffi- cient force with high stability to stay above the water. We experimentally measured the performance of the foot pads with different geometric parameters and with various gaits. We measured and analyzed the forces in the vertical direction and rolling angles of five different foot pad shapes: a circular shape, square shape, half-spherical shape, open half-cylinder shape, and closed half-cylinder shape. Additionally, the rolling stabilities of three kinds of gaits: biped, trotting, and tripod, were also empirically analyzed. The results of this research can be used as a guideline to design a stable water-running robot.  相似文献   

15.
We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios: turning in place and simultaneous walking and turning. About turning in place, three strategies are investigated and compared, including body-first, leg-first, and body/leg-simultaneous. These three strategies are used for three actions, respectively: when walking follows turning immediately, when space behind the robot is very tight, and when a large turning angle is desired. Concerning simultaneous walking and turning, the linear inverted pendulum is used as the motion model in the single-leg support phase, and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases. Compared to the trajectory generation of ordinary walking, that of simultaneous walking and turning introduces only two extra parameters: one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory. The trajectory design methodology is validated in both simulation and experimental environments, and successful robot behavior confirms the effectiveness of the strategy.  相似文献   

16.
Ten years have passed since the Japanese 'Century of the Brain' was promoted, and its most notable objective, the unique 'creating the brain' approach, has led us to apply a humanoid robot as a neuroscience tool. Here, we aim to understand the brain to the extent that we can make humanoid robots solve tasks typically solved by the human brain by essentially the same principles. I postulate that this 'Understanding the Brain by Creating the Brain' approach is the only way to fully understand neural mechanisms in a rigorous sense. Several humanoid robots and their demonstrations are introduced. A theory of cerebellar internal models and a systems biology model of cerebellar synaptic plasticity is discussed. Both models are experimentally supported, but the latter is more easily verifiable while the former is still controversial. I argue that the major reason for this difference is that essential information can be experimentally manipulated in molecular and cellular neuroscience while it cannot be manipulated at the system level. I propose a new experimental paradigm, manipulative neuroscience, to overcome this difficulty and allow us to prove cause-and-effect relationships even at the system level.  相似文献   

17.
Bionic underwater robots have been a hot research area in recent years. The motion control methods for a kind of bionic underwater robot with two undulating fins are discussed in this paper. The equations of motion for the bionic underwater robot are described. To apply the reinforcement learning to the actual robot control, a Supervised Neural Q_learning (SNQL) algorithm is put forward. This algorithm is based on conventional Q_learning algorithm, but has three remarkable distinctions: (1) using a feedforward neural network to approximate the Q_function table; (2) adopting a learning sample database to speed up learning and improve the stability of learning system; (3) introducing a supervised control in the earlier stage of learning for safety and to speed up learning again. Experiments of swimming straightforward are carried out with SNQL algorithm. Results indicate that the SNQL algorithm is more effective than pure neural Q_learning or supervised control. It is a feasible approach to figure out the motion control for bionic underwater robots.  相似文献   

18.
This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig- nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.  相似文献   

19.
In this paper a bio-inspired approach of velocity control for a quadruped robot running with a bounding gait on compliant legs is set up. The dynamic properties ofa sagittal plane model of the robot are investigated. By analyzing the stable fixed points based on Poincare map, we find that the energy change of the system is the main source for forward velocity adjustment. Based on the analysis of the dynamics model of the robot, a new simple linear running controller is proposed using the energy control idea, which requires minimal task level feedback and only controls both the leg torque and ending impact angle. On the other hand, the functions of mammalian vestibular reflexes are discussed, and a reflex map between forward velocity and the pitch movement is built through statistical regression analysis. Finally, a velocity controller based on energy control and vestibular reflexes is built, which has the same structure as the mammalian nervous mechanism for body posture control. The new con- troller allows the robot to run autonomously without any other auxiliary equipment and exhibits good speed adjustment capa- bility. A series simulations and experiments were set to show the good movement agility, and the feasibility and validity of the robot system.  相似文献   

20.
Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号