首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

2.
The expression of matrix metalloproteinases (MMP) with gelatinase activity was found in the whole hemolymph of the marine mussel Mytilus galloprovincialis Lam. Cleavage activity was specific for gelatin; very little activity towards human type-IV collagen, and no activity for cold fish gelatin, casein or bovine serum albumin were detected. EDTA and 1,10-phenanthroline were inhibitory, suggesting that mussel MMPs require divalent cations for their proteolytic activity; in fact, the presence of exogenously added divalent ions significantly protected the MMPs from inhibition. No inhibition was detected with serine or cysteine proteinase inhibitors. The specific vertebrate inhibitors as well as the classical vertebrate activator of MMPs were without effect, whereas sulphydryl reducing agents had a strong inhibitory effect. Mussel MMPs showed an exponential curve of thermal-dependent decay that was not protected by the presence of metal ions. Overall the results indicate both similarities and differences between invertebrate and vertebrate gelatinases, providing information for understanding the biological role of these ancient proteinases.  相似文献   

3.
Xu H  Cao B  George A  Mao C 《Biomacromolecules》2011,12(6):2193-2199
Bioinspired mineralization is an innovative approach to the fabrication of bone biomaterials mimicking the natural bone. Bone mineral hydroxylapatite (HAP) is preferentially oriented with c-axis parallel to collagen fibers in natural bone. However, such orientation control is not easy to achieve in artificial bone biomaterials. To overcome the lack of such orientation control, we fabricated a phage-HAP composite by genetically engineering M13 phage, a nontoxic bionanofiber, with two HAP-nucleating peptides derived from one of the noncollagenous proteins, Dentin Matrix Protein-1 (DMP1). The phage is a biological nanofiber that can be mass produced by infecting bacteria and is nontoxic to human beings. The resultant HAP-nucleating phages are able to self-assemble into bundles by forming β-structure between the peptides displayed on their side walls. The β-structure further promotes the oriented nucleation and growth of HAP crystals within the nanofibrous phage bundles with their c-axis preferentially parallel to the bundles. We proposed that the preferred orientation resulted from the stereochemical matching between the negatively charged amino acid residues within the β-structure and the positively charged calcium ions on the (001) plane of HAP crystals. The self-assembly and mineralization driven by the β-structure formation represent a new route for fabricating mineralized fibers that can serve as building blocks in forming bone repair biomaterials and mimic the basic structure of natural bones.  相似文献   

4.
Collagen fibrillogenesis in the presence of lanthanides   总被引:1,自引:0,他引:1  
Following removal of most of the telopeptide regions with pepsin, bovine dermal collagen gelled more slowly to form fibrils with a weak banding pattern. The reduction in gelling rate reflected an increase in the length of the nucleation phase and a lower rate of turbidity increase during the growth phase; the activation energy of both phases was increased. Lanthanide ions, phosphate, or, to a lesser degree, Ca2+ restored higher gelling rates to pepsin-treated collagen, but were unable to improve the banding pattern. Only lanthanide ions were able to accelerate the polymerization of intact collagen, lowering the activation energies of both the nucleation and growth phases. Lanthanide ions and phosphate also improved the banding characteristics of fibrils formed from intact collagen, without changing their width. Luminescence studies confirmed the direct binding of Tb3+ to collagen and suggested that the lanthanide ions may mediate their effects on fibrillogenesis by attaching to the helical part of the molecule. Quantitative considerations indicate that five or less lanthanide ion-binding sites per collagen molecule may be involved in the promotion of fibril formation.  相似文献   

5.
Tsai SW  Liou HM  Lin CJ  Kuo KL  Hung YS  Weng RC  Hsu FY 《PloS one》2012,7(2):e31200
Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2.  相似文献   

6.
基于串联质谱的鱼皮明胶鉴别研究   总被引:1,自引:0,他引:1  
在胶原蛋白序列比对基础上,以虹鳟鱼明胶、猪明胶和牛明胶为模型,利用高效液相色谱-串联质谱技术(HPLC-MS/MS)研究了3种明胶降解多肽组成的差异。使用胰蛋白酶将鱼皮明胶进行了酶解处理,使用HPLC-MS/MS对酶解产物中的多肽组成进行了分析,并与猪和牛明胶酶解产物中的多肽进行了比较。结果表明鱼明胶酶解产物中存在特征多肽,通过特征多肽的种类可区别鱼明胶与猪和牛明胶,研究了明胶多肽中脯氨酸羟基化修饰、明胶分子量范围和脱酰胺化对特征多肽识别的影响。研究表明利用HPLC-MS/MS技术通过识别明胶酶解产物中的特征多肽进行鱼皮明胶鉴别具有可行性。  相似文献   

7.
Biomineralization is an important process in which hard tissues are generated through mineral deposition, often assisted by biomacromolecules. Eggshells, because of their rapid formation via mineralization, are chosen as a model for understanding the fundamentals of biomineralization. This report discusses purification and characterization of various proteins and peptides from goose eggshell matrix. A novel 15-kDa protein (ansocalcin) was extracted from the eggshell matrix, purified, and identified and its role in mineralization evaluated using in vitro crystal growth experiments. The complete amino acid sequence of ansocalcin showed high homology to ovocleidin-17, a chicken eggshell protein, and to C-type lectins from snake venom. The amino acid sequence of ansocalcin was characterized by the presence of acidic and basic amino acid multiplets. In vitro crystallization experiments showed that ansocalcin induced pits on the rhombohedral faces at lower concentrations (<50 microg/ml). At higher concentrations, the nucleation of calcite crystal aggregates was observed. Molecular weight determinations by size exclusion chromatography and sodium dodecyl sulfate -polyacrylamide gel electrophoresis showed reversible concentration-dependent aggregation of ansocalcin in solution. We propose that such aggregated structures may act as a template for the nucleation of calcite crystal aggregates. Similar aggregation of calcite crystals was also observed when crystallizations were performed in the presence of whole goose eggshell extract. These results show that ansocalcin plays a significant role in goose eggshell calcification.  相似文献   

8.
Experimental investigations aimed at assessing the effectiveness of femtosecond (FS) laser ablation for creating microscale features on electrospun poly(ε‐caprolactone) (PCL)/gelatin nanofiber tissue scaffold capable of controlling cell distribution are described. Statistical comparisons of the fiber diameter and surface porosity on laser‐machined and as‐spun surface were made and results showed that laser ablation did not change the fiber surface morphology. The minimum feature size that could be created on electrospun nanofiber surfaces by direct‐write ablation was measured over a range of laser pulse energies. The minimum feature size that could be created was limited only by the pore size of the scaffold surface. The chemical states of PCL/gelatin nanofiber surfaces were measured before and after FS laser machining by attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS) and showed that laser machining produced no changes in the chemistry of the surface. In vitro, mouse embryonic stem cells (mES cells) were cultured on as‐spun surfaces and in laser‐machined microwells. Cell densities were found to be statistically indistinguishable after 1 and 2 days of growth. Additionally, confocal microscope imaging confirmed that spreading of mES cells cultured within laser‐machined microwells was constrained by the cavity walls, the expected and desired function of these cavities. The geometric constraint caused statistically significant smaller density of cells in microwells after 3 days of growth. It was concluded that FS laser ablation is an effective process for microscale structuring of these electrospun nanofiber tissue scaffold surfaces. Biotechnol. Bioeng. 2011; 108:116–126. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.  相似文献   

10.
A role for Cu(2+) ions in Alzheimer disease is often disputed, as it is believed that Cu(2+) ions only promote nontoxic amorphous aggregates of amyloid-β (Aβ). In contrast with currently held opinion, we show that the presence of substoichiometric levels of Cu(2+) ions in fact doubles the rate of production of amyloid fibers, accelerating both the nucleation and elongation of fiber formation. We suggest that binding of Cu(2+) ions at a physiological pH causes Aβ to approach its isoelectric point, thus inducing self-association and fiber formation. We further show that Cu(2+) ions bound to Aβ are consistently more toxic to neuronal cells than Aβ in the absence of Cu(2+) ions, whereas Cu(2+) ions in the absence of Aβ are not cytotoxic. The degree of Cu-Aβ cytotoxicity correlates with the levels of Cu(2+) ions that accelerate fiber formation. We note the effect appears to be specific for Cu(2+) ions as Zn(2+) ions inhibit the formation of fibers. An active role for Cu(2+) ions in accelerating fiber formation and promoting cell death suggests impaired copper homeostasis may be a risk factor in Alzheimer disease.  相似文献   

11.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Dentin Matrix Protein 1 (DMP1), the essential noncollagenous proteins in dentin and bone, is believed to play an important role in the mineralization of these tissues, although the mechanisms of its action are not fully understood. To gain insight into DMP1 functions in dentin mineralization we have performed immunomapping of DMP1 in fully mineralized rat incisors and in vitro calcium phosphate mineralization experiments in the presence of DMP1. DMP1 immunofluorescene was localized in peritubular dentin (PTD) and along the dentin-enamel boundary. In vitro phosphorylated DMP1 induced the formation of parallel arrays of crystallites with their c-axes co-aligned. Such crystalline arrangement is a hallmark of mineralized collagen fibrils of bone and dentin. Interestingly, in DMP1-rich PTD, which lacks collagen fibrils, the crystals are organized in a similar manner. Based on our findings we hypothesize, that in vivo DMP1 controls the mineral organization outside of the collagen fibrils and plays a major role in the mineralization of PTD.  相似文献   

13.
Two matrix metalloproteinases, MMP-2 and MMP-9, contain each three fibronectin type II-like modules, which form their collagen binding domains (CBDs). The contributions of CBD substrate interactions to the catalytic activities of these gelatinases have attracted special interest. Recombinant (r) CBDs retain collagen binding properties and deletions of CBDs in these MMPs reduce activities on collagen and elastin. We have characterized further the requirement of the CBD for MMP-2 cleavage of gelatin. The analyses used intact rMMP-2 and rCBD to eliminate any confounding effects that might result from structural perturbations in rMMP-2 induced by deletion of the approximately 20 kDa internal CBD. In protein-protein binding assays, 2% DMSO disrupted gelatin interactions of both rCBD and rMMP-2. At this concentration, DMSO also reduced the gelatinolytic activity by approximately 70%, pointing to a central role of CBD-substrate interactions during MMP-2 cleavage of gelatin. Subsequently, soluble rCBD was determined to competitively inhibit gelatin binding of unmodified rMMP-2 to gelatin by 73% and to reduce the MMP-2 degradation of gelatin by 70-80%. The residual gelatin cleavage that was not inhibited even by molar excess rCBD could be accounted for by degradation of short substrate molecules. Indeed, rCBD inhibited rMMP-2 cleavage of an 11 amino acid collagen-like peptide substrate (NFF-1) by less than 10%. These observations were confirmed with enzyme extracts from experimental tumors in mice. In the presence of rCBD, approximately 65% of the MMP-derived gelatinolytic activity was eliminated. Together, these results demonstrate that the CBD is absolutely required for MMP-2 cleavage of full-length collagen alpha-chains, but not for short protein fragments such as those generated by hydrolysis of gelatin.  相似文献   

14.
Self-assembling alkyl-peptides are important molecules due to their ability to construct nano-level structures such as nanofibers to be utilized as tissue engineering scaffolds. The bioactive epitope of FAQRVPP which acts as neural stem cells (NSCs) outgrowth inducing factor is used in nanofiber structures. Based on previous experimental studies the density and distribution pattern of the epitopes on the surface of the nanofibers plays an important role in the differentiation function efficiency. We decided to survey and compare the stability of two pre-constructed fiber structures in the forms of all-functionalized nanofiber (containing only bioactive alkyl-peptides) and distributed functionalized nanofiber (a combination of nonbioactive and bioactive alkyl-peptides with ratio 2:1). Our findings reveal that the all-functionalized fiber shows an unstable structure and is split into intermediate micelle-like structures to reduce compactness and steric hindrance of functional epitopes whereas the distributed functionalized fiber shows an integrated stable nanofiber with a more amount of beta sheets that are well-organized and oriented around the hydrophobic core. The hydrogen bonds and energy profiles of the structures indicate the role of hydrophobic interactions during the alkyl-chain core formation and the important role of electrostatic interactions and hydrogen bond network in the stability of the final structures. Finally, it seems that the possibility of the presence of intermediate structure is increased in the all-functionalized nanofiber environment, and it can reduce functional efficiency of the scaffolds. These findings can help to design more efficient nanofiber structures with different goals in scaffolds for tissue engineering. Abbreviations MD Molecular Dynamics

NSCs Neural Stem Cells

PME Particle mesh Ewald

RDF Radial Distribution Function

RG Radius of gyration

RASA Relative Accessible Surface Area

RMSD Root Mean Square Deviations

SASA Solvent Accessible Surface Area.

Communicated by Ramaswamy H. Sarma  相似文献   


15.
The most commonly identified mutations causing Ehlers-Danlos syndrome (EDS) classic type result in haploinsufficiency of proalpha1(V) chains of type V collagen, a quantitatively minor collagen that co-assembles with type I collagen as heterotypic fibrils. To determine the role(s) of type I/V collagen interactions in fibrillogenesis and elucidate the mechanism whereby half-reduction of type V collagen causes abnormal connective tissue biogenesis observed in EDS, we analyzed mice heterozygous for a targeted inactivating mutation in col5a1 that caused 50% reduction in col5a1 mRNA and collagen V. Comparable with EDS patients, they had decreased aortic stiffness and tensile strength and hyperextensible skin with decreased tensile strength of both normal and wounded skin. In dermis, 50% fewer fibrils were assembled with two subpopulations: relatively normal fibrils with periodic immunoreactivity for collagen V where type I/V interactions regulate nucleation of fibril assembly and abnormal fibrils, lacking collagen V, generated by unregulated sequestration of type I collagen. The presence of the aberrant fibril subpopulation disrupts the normal linear and lateral growth mediated by fibril fusion. Therefore, abnormal fibril nucleation and dysfunctional fibril growth with potential disruption of cell-directed fibril organization leads to the connective tissue dysfunction associated with EDS.  相似文献   

16.
The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. The collagen fibril therefore provides the aqueous compartment in which mineral grows. Although knowledge of the size of molecules that can diffuse into the fibril to affect crystal growth is critical to understanding the mechanism of bone mineralization, there have been as yet no studies on the size exclusion properties of the collagen fibril. To determine the size exclusion characteristics of collagen, we developed a gel filtration-like procedure that uses columns containing collagen from tendon and bone. The elution volumes of test molecules show the volume within the packed column that is accessible to the test molecules, and therefore reveal the size exclusion characteristics of the collagen within the column. These experiments show that molecules smaller than a 6-kDa protein diffuse into all of the water within the collagen fibril, whereas molecules larger than a 40-kDa protein are excluded from this water. These studies provide an insight into the mechanism of bone mineralization. Molecules and apatite crystals smaller than a 6-kDa protein can diffuse into all water within the fibril and so can directly impact mineralization. Although molecules larger than a 40-kDa protein are excluded from the fibril, they can initiate mineralization by forming small apatite crystal nuclei that diffuse into the fibril, or can favor fibril mineralization by inhibiting apatite growth everywhere but within the fibril.  相似文献   

17.
Collagen fiber assembly affects many physiological processes and is tightly controlled by collagen-binding proteins. However, to what extent membrane-bound versus cell-secreted collagen-binding proteins affect collagen fibrillogenesis is not well understood. In our previous studies, we had demonstrated that the membrane-anchored extracellular domain (ECD) of the collagen receptor discoidin domain receptor 2 (DDR2) inhibits fibrillogenesis of collagen endogenously secreted by the cells. These results led to a novel functional role of the DDR2 ECD. However, since soluble forms of DDR1 and DDR2 containing its ECD are known to naturally exist in the extracellular matrix, in this work we investigated if these soluble DDR ECDs may have a functional role in modulating collagen fibrillogenesis. For this purpose, we created mouse osteoblast cell lines stably secreting DDR1 or DDR2 ECD as soluble proteins. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays were used to demonstrate that DDR ECD expression reduced the rate and quantity of collagen deposition and induced significant changes in fiber morphology and matrix mineralization. Collectively, our studies advance our understanding of DDR receptors as powerful regulators of collagen deposition in the ECM and elucidate their multifaceted role in ECM remodeling.  相似文献   

18.
Matrix vesicles (MVs) in the growth plate bind to cartilage collagens and initiate mineralization of the extracellular matrix. Native MVs have been shown to contain a nucleational core responsible for mineral formation that is comprised of Mg(2+)-containing amorphous calcium phosphate and lipid-calcium-phosphate complexes (CPLXs) and the lipid-dependent Ca(2+)-binding proteins, especially annexin-5 (Anx-5), which greatly enhances mineral formation. Incorporation of non-Ca(2+)-binding MV lipids impedes mineral formation by phosphatidylserine (PS)-CPLX. In this study, nucleators based on amorphous calcium phosphate (with or without Anx-5) were prepared with PS alone, PS + phosphatidylethanolamine (PE), or PS + PE and other MV lipids. These were incubated in synthetic cartilage lymph containing no collagen or containing type II or type X collagen. Dilution of PS with PE and other MV lipids progressively retarded nucleation. Incorporation of Anx-5 restored nucleational activity to the PS:PE CPLX; thus PS and Anx-5 proved to be critical for nucleation of mineral. Without Anx-5, induction of mineral formation was slow unless high levels of Ca(2+) were used. The presence of type II collagen in synthetic cartilage lymph improved both the rate and amount of mineral formation but did not enhance nucleation. This stimulatory effect required the presence of the nonhelical telopeptides. Although type X collagen slowed induction, it also increased the rate and amount of mineral formation. Both type II and X collagens markedly increased mineral formation by the MV-like CPLX, requiring Anx-5 to do so. Thus, Anx-5 enhances nucleation by the CPLXs and couples this to propagation of mineral formation by the cartilage collagens.  相似文献   

19.
We recently showed that interleukin-4 (IL-4) enhanced collagen and osteocalcin accumulation and caused mineralization in human periosteal osteoblast-like (SaM-1) cells. At that time, the expression of alpha1(VI) collagen mRNA was induced. In the present study, the possible role of IL-4-induced type VI collagen in the in vitro mineralization in osteoblasts was investigated. Addition of IL-4 in the early stage (for the first 10 days) was essential for the mineralization. The mRNA levels of alpha1(VI) and alpha2(VI) collagen and protein level of type VI collagen were transiently increased by IL-4 treatment up to day 5, whereas the alpha1(I) procollagen mRNA level was greater at day 10 than at day 5. Addition of anti-type VI collagen antibody remarkably reduced the extracellular accumulations of calcium and hydroxyproline induced by IL-4. Furthermore, the transfection of antisense oligonucleotides of alpha1(VI) to SaM-1 cells in the presence of IL-4 partially inhibited IL-4-induced type I collagen accumulation. These results demonstrated that type VI collagen played important roles for IL-4-induced mineralization and hydroxyproline accumulation mostly type I collagen accumulation, in human periosteal osteoblast-like cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号