首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the influence of pontic and cantilever designs (mesial and distal) on 3-unit implant-retained prosthesis at maxillary posterior region verifying stress and strain distributions on bone tissue (cortical and trabecular bones) and stress distribution in abutments, implants and fixation screws, under axial and oblique loadings, by 3D finite element analysis. Each model was composed of a bone block presenting right first premolar to the first molar, with three or two external hexagon implants (4.0 × 10 mm), supporting a 3-unit splinted dental fixed dental prosthesis with the variations: M1 – three implants supporting splinted crowns; M2 – two implants supporting prosthesis with central pontic; M3 – two implants supporting prosthesis with mesial cantilever; M4 – two implants supporting prosthesis with distal cantilever. The applied forces were 400 N axial and 200 N oblique. The von Mises criteria was used to evaluate abutments, implants and fixation screws and maximum principal stress and microstrain criteria were used to evaluate the bone tissue. The decrease of the number of implants caused an unfavorable biomechanical behavior for all structures (M2, M3, M4). For two implant-supported prostheses, the use of the central pontic (M2) showed stress and strain distributions more favorable in the analyzed structures. The use of cantilever showed unfavorable biomechanical behavior (M3 and M4), mainly for distal cantilever (M4). The use of three implants presented lower values of stress and strain on the analyzed structures. Among two implant-supported prostheses, prostheses with cantilever showed unfavorable biomechanical behavior in the analyzed structures, especially for distal cantilever.  相似文献   

2.
A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10-13% and 65-86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1-2 mm below the contact surface for all designs.  相似文献   

3.
Purpose: The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. Methods: The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Results: Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material.?Conclusions: Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.  相似文献   

4.
5.
In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young’s modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price.  相似文献   

6.
Adequate glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA) is important to achieve, but may prove challenging in the context of glenoid bone loss or osteopenia. Current rTSA testing standards rely upon synthetic bone surrogates, but it is unclear if these models accurately recapitulate the mechanics of osteoporotic bone. Additionally, it also unknown if the use of a central screw effectively provides resistance to micromotion in the milieu of poor quality bone. The purpose of this experiment was to create a novel cyclic load test protocol that elicited clinically relevant failures, so that comparisons of relative motion between baseplates and bones could be made with: (1) synthetic bones and poor quality cadaveric bones, and (2) the use or omission of a central screw. rTSA components were implanted into cadaveric and synthetic bones with and without a central screw. To model a range of loads that may be experienced during abduction, increasing cyclic loads were applied to shoulder joints in 30° of humeral abduction. Cycles and loads prior to permanent deformation exceeding 150 µm, 1 mm, and joint failure were determined using measurements from the test frame and from 3-D motion analysis. Synthetic bones demonstrated significantly more resistance to micromotion in comparison to cadaveric bones. Use of the central screw improved resistance to dislodgement, which was only observed in the cadaveric specimens. This study highlights the need for biomechanical testing with cadaveric specimens, especially when assessing osteopenic or osteoporotic populations.  相似文献   

7.
Abstract

A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10–13% and 65–86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1–2 mm below the contact surface for all designs.  相似文献   

8.
The locking plate and percutaneous crossing metallic screws and crossing absorbable screws have been used clinically to treat intra-articular calcaneal fractures, but little is known about the biomechanical differences between them. This study compared the biomechanical stability of calcaneal fractures fixed using a locking plate and crossing screws. Three-dimensional finite-element models of intact and fractured calcanei were developed based on the CT images of a cadaveric sample. Surgeries were simulated on models of Sanders type III calcaneal fractures to produce accurate postoperative models fixed by the three implants. A vertical force was applied to the superior surface of the subtalar joint to simulate the stance phase of a walking gait. This model was validated by an in vitro experiment using the same calcaneal sample. The intact calcaneus showed greater stiffness than the fixation models. Of the three fixations, the locking plate produced the greatest stiffness and the highest von Mises stress peak. The micromotion of the fracture fixated with the locking plate was similar to that of the fracture fixated with the metallic screws but smaller than that fixated with the absorbable screws. Fixation with both plate and crossing screws can be used to treat intra-articular calcaneal fractures. In general, fixation with crossing metallic screws is preferable because it provides sufficient stability with less stress shielding.  相似文献   

9.
目的:建立人工半骨盆假体置换与联合腰椎椎弓根螺钉固定后的三维有限元模型,评价腰骶段生物力学改变后半骨盆假体力学结构的特点。方法:采用CT薄层扫描采集原始数据,分别建立正常骨盆、半骨盆假体置换术后以及半骨盆假体置换联合腰椎椎弓根螺钉固定术后骨盆的三维有限元模型,分别在第4腰椎上终板平面施以500 N的垂直纵向载荷,分析不同骨盆模型的应力分布特点。结果:与正常骨盆有限元模型相比,半骨盆假体置换术后健侧骨盆应力分布以骶髂关节、髋臼窝及耻骨为主,置换侧半骨盆假体以耻骨连接棒、髋臼杯及髂骨座为主,最大应力出现在耻骨连接棒,应力峰值为65.62 MPa。联合腰椎椎弓根螺钉固定后健侧应力相对减小,置换侧髂骨固定座与骶骨固定处应力相对减小,应力分布以腰椎椎弓根钉棒、耻骨连接棒及髋臼杯为主,最大应力出现在椎弓根螺钉,应力峰值为107 MPa。结论:半骨盆假体置换联合腰椎椎弓根螺钉固定后钉棒分担了半骨盆置换后健侧骨盆及置换侧髂骨固定座与骶骨固定处附近的部分应力,缓解应力集中现象,降低术后骨盆破坏风险,一定程度上增加了半骨盆置换后骨盆的稳定性。  相似文献   

10.
The finite element (FE) model of the pelvic joint is helpful for clinical diagnosis and treatment of pelvic injuries. However, the effect of an FE model boundary condition on the biomechanical behavior of a pelvic joint has not been well studied. The objective of this study was to study the effect of boundary condition on the pelvic biomechanics predictions. A 3D FE model of a pelvis using subject-specific estimates of intact bone structures, main ligaments and bone material anisotropy by computed tomography (CT) gray value was developed and validated by bone surface strains obtained from rosette strain gauges in an in vitro pelvic experiment. Then three FE pelvic models were constructed to analyze the effect of boundary condition, corresponding to an intact pelvic joint, a pelvic joint without sacroiliac ligaments and a pelvic joint without proximal femurs, respectively. Vertical load was applied to the same pelvis with a fixed prosthetic femoral stem and the same load was simulated in the FE model. A strong correlation coefficient (R(2)=0.9657) was calculated, which indicated a strong correlation between the FE analysis and experimental results. The effect of boundary condition changes on the biomechanical response depended on the anatomical location and structure of the pelvic joint. It was found that acetabulum fixed in all directions with the femur removed can increase the stress distribution on the acetabular inner plate (approximately double the original values) and decrease that on the superior of pubis (from 7 MPa to 0.6 MPa). Taking sacrum and ilium as a whole, instead of sacroiliac and iliolumber ligaments, can influence the stress distribution on ilium and pubis bone vastly. These findings suggest pelvic biomechanics is very dependent on the boundary condition in the FE model.  相似文献   

11.
The stress on an intramedullary screw rib fixation device holding together a centrally fractured human rib under in vivo force loadings was studied using finite element analysis (FEA). Validation of the FEA modelling using pullout from porcine ribs proved FEA to be suitable for assessing the structural integrity of screw/bone systems such as rib fixated by a screw. In the human rib fixation investigation, it was found that intramedullary bioresorbable Bioretec screws can fixate centrally fractured human ribs under normal breathing conditions. However, under coughing conditions, simulation showed Bioretec fixating screws to bend substantially. High stresses in the screw are mainly the result of flexion induced by the force loading, and are restricted to thin regions on the outside of the screw shaft. Stiffer screws result in less locally intense stress concentrations in bone, indicating that bone failure in the bone/screw contact regions can be averted with improvements in screw stiffness.  相似文献   

12.
The purpose of this study was to compare the effects of implant inclinations and load times on stress distributions in the peri-implant bone based on immediate- and delayed-loading models. Four 3D FEA models with different inclination angle of the posterior implants (0°, 15°, 30°, 45°) were constructed. A static load of 150?N in the multivectoral direction was applied unilaterally to the cantilever region. The stress distributions in the peri-implant bone were evaluated before and after osseointegration. The principal tensile stress (σmax), mean principal tensile stress (σmax), principal compressive stress (σmin) and mean principal compressive stress (σmin) of the bone and micromotion at the contact interface between the bone and implants were calculated. In all the models, peak principal stresses occurred in the bone surrounding the left tilted implant. The highest σmax and σmin were all observed in the 0° model for both immediate- and delayed-loading models. And the 0° and 15° models showed higher σmax and σmin values. The 0°models showed the largest micromotion. The observed stress distribution was better in the 30° and 45° models than in the 0° and 15° models.  相似文献   

13.
For osteosynthesis and for bone transplant fixation in particular, a lag screw with a biconcave washer, the so called "Anchor Screw" (AS) has been introduced in maxillo-facial surgery. Using 2D-finite element analysis (FEA), the v.Mises and the circumferential stresses induced in underlying bone by this AS are analysed and compared to those under a conventional lag screw. The stress distributions below the biconcave washer of the AS were correlated with histomorphological bone reactions after AS osteosynthesis in two tumor patients, retrieved 12 weeks and 19 months after tumor surgery, respectively. Depending on the thickness of cortical bone, the v.Mises stress concentrations below the biconcave washer were lower than under the head of the conventional lag screw (CLS), but with a higher stress maximum concentrated around the rim of the washer. The circumferential stresses were only half as high around the AS, and thus the deformation of bone was reduced. As predicted by FEA, histology showed microcrack formation, but then after minimal resorption, remodelling of bone below the biconcave washer. Stable osteosynthesis could be demonstrated by bony union already after 12 weeks, and, while bone remodelling continued in the healed osteotomy, it had decreased around the screws after 19 months. It can be concluded from the biomechanical principles and the histomorphological findings that the AS appears superior to the CLS.  相似文献   

14.
Achieving stability is a prerequisite for allowing bone to grow into the porous surface of non-cemented acetabular cups. The purpose of this study is to estimate the effects of interfacial characteristics on relative cyclical micromotion between cup and bone during gait in the immediate postoperative phase. The technique used is finite element analysis. Six models with different interfacial characteristics are created in order to study the effects of fixation technique. These include representation of a 1 mm press-fit, 2 mm press-fits (with and without an initial polar gap) and exact-fit conditions (with and without additional screw fixation). Although direct validation of the model has not been performed, the calculated micromotions under a static load of 1112 N are compared with appropriate experimental data. Generally, the model tends to underestimate micromotion and this underestimate is significant in the case of relative surface-normal micromotion in polar regions for models with low- and no-interference. The most likely cause of this significant underestimate is a failure of the model to accurately represent penetration of rough contacting surfaces under compression. Other types of micromotion, although low, are within standard deviations reported by Kwong et al. (1994 Journal of Arthroplasty 9, 163-170). Quasi-static joint contact and muscle forces, representative of the stance phase of gait are then applied and maximum micromotions are found to occur consistently prior to toe off: this being the point of maximum force. With regard to the press-fit simulations, good cup-bone contact in the superior region of the interface is required for stability and the greatest micromotions occur in the models with the larger interference and larger polar gaps. In contrast to the press-fit models, muscle activity in exact-fit models influences the calculations. Specifically, the early activity of m.semimembranosus modelled causes opening of the peripheral seal. Taken together it is found that polar gaps reduce the stability of the model and lack of pre-compresssion in the periphery allows this region of the interface to be opened up.  相似文献   

15.
Abstract

An innovative surgical procedure is vertebral stabilization by interbody cages. It is currently being used to separate and stabilize vertebral bodies and to promote bony fusion of the vertebrae onto or through the cages. This surgery, at some spine levels, can be performed through a laparoscope as an outpatient procedure with low morbidity. Because the procedure is new, little structural information is available on the interbody cages. The objective of this study was to evaluate the human lumbar spine stabilized by interbody cages biomechanically. The finite element method was used to compare cage designs by considering stresses in the cage and in the bone as well as relative displacements between the cage and the adjacent bone at the interface. The biomechanical evaluation considered different bone densities and considered axial, torsional, and bending loads on the lumbar spine. Stress analysis predicts local regions of stress concentration that could be damaging to cancellous bone and will likely require a remodeling response for local damage. This study predicts relative micromotion that could cause the bone resorption and fibrous tissue formation on the contact surfaces of the cage. The geometric constraints caused by the use of two cages will reduce the relative motion and therefore be more likely to allow bone ingrowth at the posterocentral contact region. Finite element analysis suggests that cages are a promising method for separation and stabilization of the vertebral bodies.  相似文献   

16.
An innovative surgical procedure is vertebral stabilization by interbody cages. It is currently being used to separate and stabilize vertebral bodies and to promote bony fusion of the vertebrae onto or through the cages. This surgery, at some spine levels, can be performed through a laparoscope as an outpatient procedure with low morbidity. Because the procedure is new, little structural information is available on the interbody cages. The objective of this study was to evaluate the human lumbar spine stabilized by interbody cages biomechanically. The finite element method was used to compare cage designs by considering stresses in the cage and in the bone as well as relative displacements between the cage and the adjacent bone at the interface. The biomechanical evaluation considered different bone densities and considered axial, torsional, and bending loads on the lumbar spine. Stress analysis predicts local regions of stress concentration that could be damaging to cancellous bone and will likely require a remodeling response for local damage. This study predicts relative micromotion that could cause the bone resorption and fibrous tissue formation on the contact surfaces of the cage. The geometric constraints caused by the use of two cages will reduce the relative motion and therefore be more likely to allow bone ingrowth at the posterocentral contact region. Finite element analysis suggests that cages are a promising method for separation and stabilization of the vertebral bodies.  相似文献   

17.
BACKGROUND: The use of artificial bone analogs in biomechanical testing of orthopaedic fracture fixation devices has increased, particularly due to the recent development of commercially available femurs such as the third generation composite femur that closely reproduce the bulk mechanical behavior of human cadaveric and/or fresh whole bone. The purpose of this investigation was to measure bone screw pullout forces in composite femurs and determine whether results are comparable to cadaver data from previous literature. METHOD OF APPROACH: The pullout strengths of 3.5 and 4.5 mm standard bicortical screws inserted into synthetic third generation composite femurs were measured and compared to existing adult human cadaveric and animal data from the literature. RESULTS: For 3.5 mm screws, the measured extraction shear stress in synthetic femurs (23.70-33.99 MPa) was in the range of adult human femurs and tibias (24.4-38.8 MPa). For 4.5 mm screws, the measured values in synthetic femurs (26.04-34.76 MPa) were also similar to adult human specimens (15.9-38.9 MPa). Synthetic femur results for extraction stress showed no statistically significant site-to-site effect for 3.5 and 4.5 mm screws, with one exception. Overall, the 4.5 mm screws showed statistically higher stress required for extraction than 3.5 mm screws. CONCLUSIONS: The third generation composite femurs provide a satisfactory biomechanical analog to human long-bones at the screw-bone interface. However, it is not known whether these femurs perform similarly to human bone during physiological screw "toggling."  相似文献   

18.
Experimental studies have been made to study and validate the biomechanics of the pair femur/acetabulum considering both structures without the presence of cartilage. The main goal of this study was to validate a numerical model of the intact hip. Numerical and experimental models of the hip joint were developed with respect to the anatomical restrictions. Both iliac and femur bones were replicated based on composite replicas. Additionally, a thin layer of silicon rubber was used for the cartilage. A three-dimensional finite element model was developed and the boundary conditions of the models were applied according to the natural physiological constrains of the joint. The loads used in both models were used just for comparison purposes. The biomechanical behaviour of the models was assessed considering the maximum and minimum principal bone strains and von Mises stress. We analysed specific biomechanical parameters in the interior of the acetabular cavity and on femur's surface head to determine the role of the cartilage of the hip joint within the load transfer mechanism. The results of the study show that the stress observed in acetabular cavity was 8.3 to 9.2 MPa. When the cartilage is considered in the joint model, the absolute values of the maximum and minimum peak strains on the femur's head surface decrease simultaneously, and the strains are more uniformly distributed on both femur and iliac surfaces. With cartilage, the cortex strains increase in the medial side of the femur. We prove that finite element models of the intact hip joint can faithfully reproduce experimental models with a small difference of 7%.  相似文献   

19.
The basic stress pathway above the acetabular dome is important for the maintenance of implant stability in press-fit acetabular reconstruction of total hip arthroplasty. However, information on the basic stress pathway and its impact factors remains unclear. The objective of this study was to investigate the effects of the orientations and positions of the acetabular component on the basic stress pathway. The basic stress pathway above the acetabular dome was defined as two parts: 3D basic trabecular bone stress distribution and quantified basic cortical bone stress level, using two subject-specific finite element normal hip models. The effects were then analysed by generating 32 reconstructed acetabular cases with different cup abduction and anteversion angles within a range of 35–50° and 10–25°, respectively, and 12 cases with different hip centre heights within a range of 0–15 mm above the acetabular dome. The 3D trabecular stress distribution decreased remarkably in all cases, while the 80% of the basic cortical bone stress level was maintained in cases when the acetabular component was positioned at 10° or 15° anteversion and 40° or 45° abduction angles. The basic stress pathway above the acetabular dome was disturbed when the superior displacement of the hip centre exceeded 5 mm above the anatomical hip centre. Positioning the acetabular component correctly contributes to maintain the stress balance between the acetabular cup and the bone during acetabular reconstruction, thus helping restore the normal hip biomechanics and preserve the stability of the implants.  相似文献   

20.
A number of screws commonly used for internal fixation in scaphoid bone fractures and nonunions are compared regarding biomechanical properties and clinical applicability. The experiments were carried out on models made of ash-wood, representing a reconstruction and fixation as is performed in a cortico-cancellous inlay bone graft for scaphoid non-union. For fixation use was made of 2.7 and 3.5 AO/ASIF cortical screws respectively, 4.0 AO/ASIF cancellous screws, Herbert screws, and a newly designed screw called the three components screw (D.K.S.). The models with implanted screws were tested for bending strength, tensile strength and torsion stability. No large differences between the various screws were found regarding the measured parameters, so that a small intra-osteal implant such as the Herbert screw and the D.K.S., which can be inserted easily and which gives a certain amount of interfragmentary compression, will be sufficient for osteosynthesis of the scaphoid bone. In case an intra-osteal implant is not available a single 3.5 AO/ASIF cortical screw, inserted following lag-screw principles, is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号