首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

3.
4.
5.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

6.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

7.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

8.
In 3 of 40 MELAS patients, a new common mutation, a T-to-C transition at nucleotide position 3271 in the mitochondrial tRNA(Leu(UUR] gene was recognized and was very near to the most common mutation site at 3243. With a simple detection method using polymerase chain reaction with a mismatch primer, none of 46 patients with other mitochondrial diseases and 50 controls had this mutation.  相似文献   

9.
The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem. The introduction of a compensatory A3261G mutation reintroduces base pairing at this site and restores the structure of this domain. In fact, the anticodon stem of the A3261G/U3271C mutant appears more structured than wild-type (WT) hs mt tRNA(Leu(UUR)), indicating that the entirely AU stem of the native tRNA is intrinsically weak. The results of the chemical probing experiments are mirrored in the aminoacylation activities of the mutants. The U3271C substitution decreases aminoacylation reactivity relative to the WT tRNA due to an increase in K(m) for the pathogenic mutant. The binding defect is a direct result of the structural disruption caused by the pathogenic mutation, as the introduction of the stabilizing compensatory mutation restores aminoacylation activity. Other examples of functional defects associated with the disruption of weak domains in hs mt tRNAs have been reported, indicating that the effects of pathogenic mutations may be amplified by the fragile structures that are characteristic of this class of tRNAs.  相似文献   

10.
11.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

12.
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.  相似文献   

13.
14.
15.
人的多种遗传疾病与线粒体tRNA基因突变有关,这些突变导致疾病发生的分子机理是当前研究的热点.通过研究线粒体tRNA分子上的碱基修饰情况,人们发现了一类特殊的带有牛磺酸衍生物基团的修饰,这类修饰主要位于线粒体tRNALys和线粒体tRNALeu(UUR)反密码子第一位摆动(wobble)位点的碱基上.最近的研究表明,位于这两种线粒体tRNA基因上的多种突变与遗传性脑肌病相关,包括A8344G,A3243G,T3271C等等,它们可以导致tRNA上相应摆动位点的碱基修饰缺失.无论是在体外培养的带有相应突变的细胞内,还是在来源于脑肌病病人的组织中,科学家都发现了相同的线粒体tRNA碱基修饰缺陷.通过分子手术证实,此类碱基修饰对于维持这两种tRNA的反密码子与mRNA上相应密码子的相互识别至关重要,缺失了这种修饰的tRNA将无法识别一些对应的密码子.通过进一步的实验,人们还鉴定出负责催化此类碱基修饰的酶.这些研究不但揭示了线粒体遗传性脑肌病相关突变的致病机理,也将为研究基因治疗提供可能的新手段.  相似文献   

16.
17.
18.
Cells harboring patient-derived mitochondria with an A-to-G transition at nucleotide position 3243 of their mitochondrial DNA display severe loss of respiration when compared with cells containing the wild-type adenine but otherwise identical mitochondrial DNA sequence. The amount and degree of leucylation of tRNA(Leu(UUR)) were both found to be highly reduced in mutant cells. Despite the low level of leucyl-tRNA(Leu(UUR)), the rate of mitochondrial translation was not seriously affected by this mutation. Therefore, decrease of mitochondrial protein synthesis as such does not appear to be a necessary prerequisite for loss of respiration. Rather, the mitochondrially encoded proteins seem subject to elevated degradation, leading to a severe reduction in their steady state levels. Our results favor a scheme in which the 3243 mutation causes loss of respiration through accelerated protein degradation, leading to a disequilibrium between the levels of mitochondrial and nuclear encoded respiratory chain subunits and thereby a reduction of functional respiratory chain complexes. The possible mechanisms underlying the pathogenesis of mitochondrial diabetes is discussed.  相似文献   

19.
20.
线粒体tRNA基因突变是导致感音神经性耳聋的原因之一.有些tRNA突变可直接造成耳聋的发生,称之为原发突变.如tRNALeu(UUR) A3243G等突变与综合征型耳聋相关,而tRNASer(UCN) T7511C等突变则与非综合征型耳聋相关.此外,继发突变如tRNAThr G15927A等突变则对原发突变起协同作用,影响耳聋的表型表达.这些突变可引起tRNA二级结构改变,从而影响线粒体蛋白质合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍可导致耳聋的发生.主要讨论与耳聋相关的线粒体tRNA突变及其致聋机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号