首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been speculated that NG-hydroxy- -arginine (OH- -Arg), which is an intermediate in NO production from -arginine, may be converted to NO by superoxide ion. However, there is still no direct evidence for this conversion. In the present study this was investigated using superoxide ion generated either in acellular or cellular systems. It was found that OH- -Arg and hydroxylamine were converted to nitrite and nitrate apparently via NO by superoxide ion in aqueous solution. Arginine remained unaffected. These changes were observed during reaction of chemical substances as well as in a biological system (zymosan-activated macrophages in culture). Superoxide dismutase prevented this transformation. OH- -Arg was also spontaneously hydrolysed to hydroxylamine and -citrulline, however this occurred at pH> 9 only. Activated microsomes (containing different isoforms of cytochrome P450) were unable to replace NO-synthase in its ability to produce OH- -Arg from -arginine. These data support the hypothesis that a pathway alternative to the well-known synthesis of NO by NO-synthase via OH- -Arg exists. This pathway may involve the production of OH- -Arg by NO-synthase and decomposition of OH- -Arg to NO by the action of superoxide ion. Alternatively, hydrolysis of OH- -Arg to hydroxylamine may occur followed by its oxidation to NO, again by superoxide ion.  相似文献   

2.
Psychological stress elevates blood pressure through sympathetic nerve activation. This pressor response is supposedly associated with cardiovascular events. We investigated a sex difference in the pressor response and norepinephrine surge to cage-switch stress in rats. Wistar male and female rats were catheterized for blood pressure monitoring and blood sampling. Six days post-surgery, the rats were exposed to the cage-switch stress and blood samples were collected at rest and 30 min after the start of the stress. The stress-induced pressor response was greater in the male than in the female rats. The stress significantly increased the norepinephrine level in the male, but not in the female rats. Pre-treatment with N(G)-nitro-l-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase inhibitor, attenuated the norepinephrine response significantly in the male rats. There was no sex difference in the endothelial NO synthase expression in the gastrocnemius muscle. However the phosphorylation at serine 1177, a marker for eNOS activation, was higher in the male than in the female rats. These results suggest that NO is involved in the norepinephrine surge to psychological stress in the male rats, but not in the female rats. This is the first report on a sex difference in the norepinephrine surge in response to psychological stress through NO, in association with pressor response.  相似文献   

3.
This study was conducted to demonstrate the involvement of nitric oxide synthase (NOS) in the early-phase isoflurane-induced hypotension and to ascertain whether this NOS is neuronal NOS (nNOS) or endothelial NOS (eNOS). Mean arterial pressures (MAPs) were directly measured from the femoral arteries of urethane-anesthetized rats. Isoflurane-induced changes in MAP were monitored in rats following pretreatment with vehicle or one of the following NOS inhibitors: L-NG-monomethyl-L-arginine (L-NMMA), which is non-selective; L-NG-nitro arginine (L-NOARG), which is more selective for nNOS and eNOS; and 7-nitroindazole (7-NI), which is selective for nNOS. Exposure to 2% isoflurane in oxygen produced a triphasic reduction in MAP, including an early phase in which mean arterial pressure (MAP) fell by 25-30% during the initial 2½ min. This early hypotensive response, but not subsequent phases, was abolished by i.v. pretreatment with either L-NMMA or L-NOARG. The early-phase hypotension was also significantly attenuated by i.p. pretreatment with 7-NI; however, the blockade was not as complete as with L-NMMA or L-NOARG. Cerebella and aorta were removed from vehicle- and 7-NI pretreated rats and assayed for NOS activity by determining the conversion of [14C]L-arginine to [14C]L-citrulline. The 7-NI pretreatment significantly reduced NOS activity in the cerebellum but not the aorta. These findings indicate that the early-phase isoflurane-induced hypotension may involve nNOS as well as eNOS. The nNOS may participate in regulation of isoflurane-induced neuronal release of endogenous opioid peptide, which produces a vasodilation that is dependent on NO derived from an action of eNOS.  相似文献   

4.
Ganoderic triterpenoid (GT) is a promising anti-tumour constituent in Ganoderma lucidum. The aim of this study was to investigate induction by and a possible signalling mechanism of nitric oxide (NO) for GT synthesis. Compared to the control, the biomass decreased by 43.5% at 120 h and the GT yield increased by 40.94% at 72 h in the presence of a 5 mM NO donor sodium nitroprusside supplement. The gene expression profiles of G. lucidum in response to NO were investigated by RNA-sequencing. Functional annotation and an enrichment analysis of the differentially expressed genes indicated that NO inhibited mycelial growth probably via the suppression of the glycolysis genes involved in carbohydrate metabolism. NO may function directly as a regulator of gene expression in the mevalonate pathway to induce GT biosynthesis, and the hyper-production of GT in response to NO could also be accomplished by a signalling function involving Ca2+ and a reactive oxygen species (ROS) pathway. The results of this study are useful for large-scale GT production and can facilitate further studies on the endogenous signalling pathways involved in the GT biosynthetic pathway.  相似文献   

5.
The nature of the action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on hormone release from isolated islets was investigated. We found that glucose-induced insulin release was potentiated by L-NAME in the absence or presence of diazoxide, a potent channel opener, as well as in the presence of diazoxide plus a depolarizing concentration of K+. At a low, physiological glucose concentration L-NAME did not influence insulin secretion induced by K+ but inhibited glucagon secretion. L-arginine-induced insulin release was potentiated by L-NAME. This potentiation was observed also in the presence of K+ plus diazoxide. Further, glucagon release induced by L-arginine as well as by L-arginine plus K+ and diazoxide was suppressed by L-NAME. The results strongly suggest that the L-NAME-induced potentiation of insulin secretion in response to glucose or L-arginine as well as the inhibitory effects on glucagon secretion are largely mediated by L-NAME directly suppressing islet NOS activity. Hence NO apparently affects insulin and glucagon secretion independently of membrane depolarization events.  相似文献   

6.
Fan W  Huang F  Wu Z  Zhu X  Li D  He H 《Nitric oxide》2012,26(1):32-37
Nitric oxide (NO) is a free radical gas that has been shown to be produced by nitric oxide synthase (NOS) in different cell types and recognized to act as a neurotransmitter or neuromodulator in the nervous system. NOS isoforms are expressed and/or can be induced in the related structures of trigeminal nerve system, in which the regulation of NOS biosynthesis at different levels of gene expression may allow for a fine control of NO production. Several lines of evidence suggest that NO may play a role through multiple mechanisms in orofacial pain processing. This report will review the latest evidence for the role of NO involved in orofacial pain and the potential cellular mechanisms are also discussed.  相似文献   

7.
The involvement of nitric oxide in the analgesic effects of ketamine   总被引:11,自引:0,他引:11  
We investigated the contribution of NO-cyclic GMP (cGMP) pathway to the antinociceptive effects of ketamine in mice by using the nitric oxide synthase inhibitor, nitro(g)- L-arginine methyl ester (L-NAME). Intraperitoneal (i.p.) (1, 5 or 10 mg/kg) or intrathecal (i.th.) (10, 30 or 60 microg/mouse) administration of ketamine produced dose-dependent antinociceptive effects in the acetic acid-induced writhing and formalin tests but not in the tail-flick nor in hot-plate tests. Pretreatment of mice with L-NAME (10 mg/kg, i.p.) which produced no antinociception on its own, significantly inhibited the antinociceptive effect of ketamine (1, 5 or 10 mg/kg, i.p.). However, L-NAME (30 microg/mouse) was given intrathecally, it neither modified the antinociceptive effect of i.th. ketamine (10, 30 or 60 microg/mouse) nor did it produce an antinociceptive effect alone. These data suggest that the activation of the NO-cGMP pathway probably at the supraspinal level, but not spinal level, contributes to the antinociceptive effects of ketamine.  相似文献   

8.
NO在植物生长发育和环境胁迫响应中的作用   总被引:1,自引:0,他引:1  
一氧化氮(NO)是具有生物活性和信号转导作用的气体活性分子,它不仅对植物的许多生命活动如种子萌发、生长和衰老等具有直接的生理调节功能,而且作为防御反应中的关键信使,参与了植物对外界环境胁迫的响应,如干旱胁迫、热胁迫、盐胁迫、UV-B辐射、臭氧胁迫、重金属胁迫、机械损伤以及植物抗病反应。NO与各种激素如乙烯、脱落酸、水杨酸、生长素和细胞分裂素等,在调节植物的生理活动与信号转导方面有明显的协同作用,通过激素起作用可能是植物内源NO作用的机理之一。探明在正常生长状况下植物内源NO对植物生长发育的调控机制及其参与信号转导的生理机制是目前研究的重点。  相似文献   

9.
Nitric oxide (NO) is a simple and unique molecule that has diverse functions in organisms, including intracellular and intercellular messenger. The influence of NO on cell growth of Saccharomyces cerevisiae and as a signal molecule in stress response was evaluated. Respiring cells were more sensitive to an increase in intracellular NO concentration than fermentatively growing cells. Low levels of NO demonstrated a cytoprotective effect during stress from heat-shock or high hydrostatic pressure. Induction of NO synthase was isoform-specific and dependent on the metabolic state of the cells and the stress response pathway. These results support the hypothesis that an increase in intracellular NO concentration leads to stress protection.  相似文献   

10.
It has been speculated that NG-hydroxy-l-arginine (OH-l-Arg), which is an intermediate in NO production from l-arginine, may be converted to NO by superoxide ion. However, there is still no direct evidence for this conversion. In the present study this was investigated using superoxide ion generated either in acellular or cellular systems. It was found that OH-l-Arg and hydroxylamine were converted to nitrite and nitrate apparently via NO by superoxide ion in aqueous solution. Arginine remained unaffected. These changes were observed during reaction of chemical substances as well as in a biological system (zymosan-activated macrophages in culture). Superoxide dismutase prevented this transformation. OH-l-Arg was also spontaneously hydrolysed to hydroxylamine and l-citrulline, however this occurred at pH > 9 only. Activated microsomes (containing different isoforms of cytochrome P450) were unable to replace NO-synthase in its ability to produce OH-l-Arg from l-arginine. These data support the hypothesis that a pathway alternative to the well-known synthesis of NO by NO-synthase via OH-l-Arg exists. This pathway may involve the production of OH-l-Arg by NO-synthase and decomposition of OH-l-Arg to NO by the action of superoxide ion. Alternatively, hydrolysis of OH-l-Arg to hydroxylamine may occur followed by its oxidation to NO, again by superoxide ion.  相似文献   

11.
This study examined if the nitric oxide (NO)/L-arginine pathway participates in and if the sympathetic nervous system attenuates the depressor action of human urotensin II. I.V. bolus injections of human urotensin II (0.1-30 nmol/kg) caused dose-dependent decreases in mean arterial pressure (MAP, EC(50) = 2.09 +/- 0.8 nmol/kg; Emax = -18 +/- 3 mmHg ) and increases in heart rate. The depressor response to human urotensin II (3 nmol/kg) was attenuated by approximately 50% in rats with MAP elevated through pretreatment with N(G)-nitro-L-arginine methyl ester (inhibitor of NO synthase), relative to that in rats with MAP elevated to a similar level through a continuous infusion of noradrenaline. Autonomic blockade with i.v. injections of mecamylamine (ganglion blocker) and propranolol (beta-adrenoceptor antagonist) markedly augmented the depressor response to human urotensin II, but almost completely attenuated the tachycardia. The results suggest that the depressor response to human urotensin II is partially mediated via the NO/L-arginine pathway, and is suppressed by activity of the sympathetic nervous system. Furthermore, tachycardic response to human urotensin II is primarily mediated indirectly via baroreflex mechanisms.  相似文献   

12.
The regional distribution of NG-nitro-l-[3H]arginine (L-[3H]NOARG) binding to different regions of rat brain was studied by quantitative autoradiography. These studies revealed highest density of binding sites in cerebellum, anterior olfactory nucleus, islands of Calleja and substantia nigra with appreciable binding site densities in inferior colliculus, superior colliculus, olfactory tubercle and dorsal tegmental nucleus. The regional distribution of L-[3H]NOARG binding, is in good agreement with the distribution of nitric oxide synthase studied previously by NADPH-diaphorase staining and immunohistochemistry using antibodies against neuronal nitric oxide synthase. The kinetics of L-[3H]NOARG binding to the cytosolic preparations of cerebral cortex, cerebellum, hippocampus and striatum was studied using an in vitro binding technique. Specific L-[3H]NOARG binding was of nanomolar affinity, saturable, and best fit to a single-site model in all four brain regions. These studies support the potential use of L-[3H]NOARG binding as a tool for further elucidation of the regional distribution and functional properties of NOS in the central nervous system.  相似文献   

13.
The chemical biology of nitric oxide: implications in cellular signaling   总被引:1,自引:0,他引:1  
Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions.  相似文献   

14.
Wang Y  He Q  Qin H  Xu J  Tong J  Gao L  Xu J 《Life sciences》2006,79(2):182-192
Thy-1 nephritis (Thy-1 N), namely, anti-Thy-1 or anti-thymocyte serum (ATS) induced nephritis (ATSN), is a typical model of human mesangioproliferative glomerulonephritis. The pathologic changes of glomerular mesangial cells (GMCs) in Thy-1 N are complement-dependent, especially C5b-9 complexes, but the role of C5b-9 in the mechanism of Thy-1 N has not been defined. Because previous studies have demonstrated that sublytic C5b-9 can increase production of several inflammatory mediators from resident glomerular cells, we utilized the isolated human membrane-bound C5b-9 complexes to stimulate the cultured rat GMCs and examined whether the GMCs can also induce the synthesis of nitric oxide (NO) in vitro. Simultaneously, the effects of antiserum against rat C5b-9 and NG-monomethyl-L-arginine (L-NMMA, NO inhibitor), including interfering with the formation of C5b-9, reducing NO production and GMCs injury were observed. The results showed that sublytic C5b-9 can increase synthesis of inducible NO from the stimulated GMCs, and that the anti-C5b-9 antiserum can obviously inhibit the pathologic changes in Thy-1 N, while L-NMMA can decrease the GMCs damage although the effect is not so significant as that of the anti-C5b-9 antiserum. These findings indicate that the synthesis of NO by GMCs can be promoted by sublytic C5b-9, and that lesions of GMCs in rats with Thy-1 N are prevented by either inhibiting C5b-9 formation or NO elevation in advance. The pathologic changes of GMCs in Thy-1 N are indeed complement C5b-9-dependent, and the glomerular injury can be mediated in part through elevation of NO from the GMCs after the sublytic C5b-9 stimulation.  相似文献   

15.
Yang J  Zhu M  Fu F  Tang CS  Li JX 《Peptides》2003,24(12):1963-1969
The cardiac effects of adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) as well as the possible signaling pathways were investigated. In the isolated perfused rat heart, infusion of AM (10(-11) to 10(-8) M) and PAMP(10(-11) to 10(-8) M) for 10 min, alone or in combination, induced concentration-dependent decreases in the left ventricular pressure (LVP), LVP +/- dp/dtmax of the hearts. The effects were attenuated by Nomega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthase. ADM and PAMP alone or in combinations increased the coronary fluid (CF), which could be antagonized by L-NAME. Pretreatment of H89, an inhibitor of protein kinase A (PKA), failed to alter the AM- or PAMP-induced decreases in LVP and LVP +/- dp/dtmax, but further promoted the AM or PAMP increased CF. The cAMP content in left cardiac ventricle was increased significantly by ADM infusions but not by PAMP. There was no statistical difference in cAMP contents with ADM administrated alone from those combined with ADM and PAMP. In conclusion, this study reveals that ADM and PAMP infused alone or in combinations inhibited the function of rat hearts in vitro, which may be partly involved with the NOS/NO pathway, rather than cAMP/PKA.  相似文献   

16.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

17.
18.
Jian Wen Wang  Jian Yong Wu   《Nitric oxide》2004,11(4):1073-306
This work was to characterize the generation of nitric oxide (NO) in Taxus chinensis cells induced by a fungal elicitor extracted from Fusarium oxysporum mycelium and the signal role of NO in the elicitation of plant defense responses and secondary metabolite accumulation. The fungal elicitor at 10-100 microg/ml (carbohydrate equivalent) induced a rapid and dose-dependent NO production in the Taxus cell culture, which exhibited a biphasic time course, reaching the first plateau within 1 h and the second within 12 h of elicitor treatment. The NO donor sodium nitroprusside potentiated elicitor-induced H2O2 production and cell death but had little influence on elicitor-induced membrane K+ efflux and H+ influx (medium alkalinization). NO inhibitors Nomega-nitro-L-arginine and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide partially blocked the elicitor-induced H2O2 production and membrane ion fluxes. Moreover, the NO inhibitors suppressed elicitor-induced activation of phenylalanine ammonium-lyase and accumulation of diterpenoid taxanes (paclitaxel and baccatin III). These results suggest that NO plays a signal role in the elicitor-induced responses and secondary metabolism activities in the Taxus cells.  相似文献   

19.
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction.  相似文献   

20.
目的探讨一氧化氮(NO)在大鼠肝肺综合征(HPS)发病机制中的作用。方法应用放射免疫分析法检测HIS大鼠血浆和肝组织、肺组织匀浆中NO的水平。结果(1)HIS大鼠血浆和肝组织、肺组织匀浆中NO水平动态升高。(2)各阶段血浆和肝组织、肺组织匀浆中NO水平与谷丙转氨酶(ALT)、总胆红素(TBIL)呈正相关,出现腹水者血浆和肝组织、肺组织匀浆中NO水平高于未出现腹水者。结论在HIS形成过程中,血浆和肝组织、肺组织匀浆中NO水平持续升高,与肝功能受损状态和腹水形成有关,提示扩血管物质NO可能参与HIS的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号