首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endo-M, endo-β-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-β-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-β-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

2.
Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M) was proved to act on complex type biantennary oligosaccharides of glycoproteins by using dansylated asparagine-linked and pyridylaminated oligosaccharides, as the substrate. The enzyme could act on both asialo- and sialo-biantennary oligosaccharides. This is the only endo-β-N-acetylglucosaminidase known to act on sialo glycans, though their activity for them was weak. The enzyme could liberate complex type biantennary oligosaccharides from native human asialotransferrin, which was ascertained by a combination of the pyridylaminated method and HPLC. The enzyme had substrate specificity for high-mannose type oligosaccharides different from those of the endo-β-N-acetylglucosaminidases of other microorganisms: ovalbumin glycopeptide-IV was a better substrate for Endo-M than glycopeptide-V. The enzyme could act on complex type triantennary oligosaccharides of dansylated glycopeptide prepared from calf fetuin. The enzyme had various novel specificities in regard to activities on complex type and high-mannose type oligosaccharides in glycoproteins.  相似文献   

3.
Endo-M, endo-beta-N-acetylglucosaminidase from Mucor hiemalis, is known as a useful enzyme for the synthesis of neoglycopeptides due to its transglycosylation activity. We cloned the Endo-M gene encoding a putative 744 amino acids, which shows high identity to glycoside hydrolase family 85 endo-beta-N-acetylglucosaminidases. The gene encoding Endo-M was expressed in protease-deficient Candida boidinii with a molecular mass of 85 kDa as a monomeric form. Recombinant Endo-M could liberate both high-mannose type and biantennary complex type oligosaccharides from glycopeptides, which was same as the native enzyme. The Km and Kcat values for DNS-Man6GlcNAc2Asn were 0.51 mM and 8.25 s(-1), respectively. Recombinant Endo-M also exhibited transglycosylation activity toward high-mannose type and biantennary complex type oligosaccharides, which were transferred to alcohols, monosaccharides, oligosaccharides, and glycosides. To investigate about the catalytically essential amino acids of Endo-M, site-directed mutagenesis was performed, and it was found that mutants E177G and E177Q completely abolished the hydrolytic activity and W228R partially abolished the transglycosylation activity.  相似文献   

4.
The activity and substrate specificity of endo-beta-N-acetylglucosaminidase [glycopeptide-D-mannosyl-N4-(N-acetyl-D-glucosaminyl)2-asparagine 1,4-N-acetyl-beta-glucosamino-hydrolase, EC 3.2.1.96] obtained from Mucor hiemalis (Endo-M) was compared with that of the enzyme obtained from Flavobacterium meningosepticum (Endo-F), which is the only enzyme available that acts on the complex oligosaccharides of asparagine-linked sugar chains in glycoproteins. They showed almost the same activities toward DNS-ovalbumin glycopeptide containing high-mannose and hybrid asparagine-linked oligosaccharides. However, Endo-M showed high activity towards DNS-asialotransferrin and DNS-transferrin glycopeptides, which contain complex biantennary oligosaccharides. Endo-M could weakly act even on DNS-asialofetuin glycopeptide containing complex triantennary oligosaccharides, while Endo-F could not. SDS-denatured asialotransferrin was deglycosylated by both enzymes in the presence of non-ionic detergent (NP-40) and EDTA, and the deglycosylated protein migrated to a lower molecular weight position than asialotransferrin on SDS-PAGE. However, even in the absence of detergent, Endo-M deglycosylated native asialotransferrin and transferrin. Deglycosylation of asialotransferrin was confirmed by means of Con A-Sepharose 4B column chromatography and SDS-PAGE.  相似文献   

5.
We report the identification, molecular cloning, and characterization of an endo-beta-N-acetylglucosaminidase from the nematode Caenorhabditis elegans. A search of the C. elegans genome database revealed the existence of a gene exhibiting 34% identity to Mucor hiemalis (a fungus) endo-beta-N-acetylglucosaminidase (Endo-M). Actually, the C. elegans extract contained endo-beta-N-acetylglucosaminidase activity. The putative cDNA for the C. elegans endo-beta-N-acetylglucosaminidase (Endo-CE) was amplified by polymerase chain reaction from the Uni-ZAP XR library, cloned, and sequenced. The recombinant Endo-CE expressed in Escherichia coli exhibited substrate specificity mainly for high-mannose type oligosaccharides. Man(8)GlcNAc(2) was the best substrate for Endo-CE, and Man(3)GlcNAc(2) was also hydrolyzed. Biantennary complex type oligosaccharides were poor substrates, and triantennary complex substrates were not hydrolyzed. Its substrate specificity was similar to those of Endo-M and endo-beta-N-acetylglucosaminidase from hen oviduct. Endo-CE was confirmed to exhibit transglycosylation activity, as seen for some microbial endo-beta-N-acetylglucosaminidases. This is the first report of the molecular cloning of an endo-beta-N-acetylglucosaminidase gene from a multicellular organism, which shows the possibility of using this well-characterized nematode as a model system for elucidating the role of this enzyme.  相似文献   

6.
Structural changes in N-linked oligosaccharides of glycoproteins during seed development of Ginkgo biloba have been explored to discover possible endogenous substrate(s) for the Ginko endo-beta-N-acetylglucosaminidase (endo-GB; Kimura, Y., et al. (1998) Biosci. Biotechnol. Biochem., 62, 253-261), which should be involved in the production of high-mannose type free N-glycans. The structural analysis of the pyridylaminated oligosaccharides with a 2D sugar chain map, by ESI-MS/MS spectroscopy, showed that all N-glycans expressed on glycoproteins through the developmental stage of the Ginkgo seeds have the xylose-containing type (GlcNAc2 approximately 0Man3Xyl1Fuc1 approximately 0GlcNAc2) but no high-mannose type structure. Man3Xyl1Fuc1GlcNAc2, a typical plant complex type structure especially found in vacuolar glycoproteins, was a dominant structure through the seed development, while the amount of expression of GlcNAc2Man3Xyl1Fuc1GlcNAc2 and GlcNAc1Man3Xyl1Fuc1GlcNAc2 decreased as the seeds developed. The dominantly occurrence of xylose-containing type structures and the absence of the high-mannose type structures on Ginkgo glycoproteins were also shown by lectin-blotting and immunoblotting of SDS-soluble glycoproteins extracted from the developing seeds at various developmental stages. Concerning the endogenous substrates for plant endo-beta-N-acetylglucosaminidase, these results suggested that the endogenous substrates might be the dolicol-oligosaccharide intermediates or some glycopeptides with the high-mannose type N-glycan(s) derived from misfolded glycoproteins in the quality control system for newly synthesized glycoproteins.  相似文献   

7.
Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H using a carbohydrate analyzer (Dionex BioLC). All the carbohydrate separations were carried out on a polymeric pellicular anion-exchange column HPIC-AS6/CarboPac PA-1 (Dionex) using only two eluants namely, 0.5 M NaOH and 3% acetic acid/NaOH pH 5.5, which were mixed with water to generate various gradients. Developed conditions for quantitative detection of carbohydrates with pulsed amperometry were necessary to obtain steady baselines at 0.1-0.3 microA output with suitable sensitivity (less than 5 pmol) in separations employing a variety of acidic and alkaline sodium acetate gradients. Oligosaccharides released from heat-denatured and trypsin-treated glycoproteins were purified initially from large-scale digestion (greater than 0.1 g) by extraction of peptide material into phenol/chloroform and finally by ion-exchange chromatography of the acqueous phase. Oligosaccharides isolated from the peptide N-glycosidase digests of bovine fetuin, human transferrin and alpha 1-acid glycoprotein gave multiple peaks in each charge group in separations based on the charge content at pH 5.5. Alkaline sodium acetate gradients were developed to obtain oligosaccharide maps of the glycoproteins within 60 min, in which separated oligosaccharides eluted in the order of neutral, mono-, di-, tri- and tetra-sialylated species based on both charge, size and structure. Baseline separations were obtained with neutral oligosaccharide types but mixtures of high-mannose and complex types were poorly resolved. The high-mannose peaks were eliminated specifically from complex oligosaccharides by digesting with alpha-mannosidase. Treatment with beta-galactosidase, beta-N-acetylglucosaminidase and alpha-mannosidase resulted in a decrease of the oligosaccharide elution times corresponding to the number of sugar residues lost, the profile of changes was highly reproducible. In contrast, treatment with alpha-L-fucosidase, endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H resulted in an increase in their corresponding oligosaccharide retention times similar to the presence of an additional sugar residue. Conditions developed for separation of the reduced oligosaccharides and also a mixture of monosaccharide to oligosaccharide containing about 15 sugar residues within 30 min were useful in determining the effect of endo- and exo-glycosidases on porcine thyroglobulin oligosaccharides. Changes in elution time of the oligosaccharides following specific glycosidase digestions combined with methylation analysis provided a rapid and sensitive tool for confirmation of the carbohydrate primary structures present in thyroglobulin.  相似文献   

8.
Although it has been found that plant endo-beta-N-acetylglucosaminidase shows strong activity towards denatured glycoproteins and glycopeptides with high-mannose type N-glycans and free high-mannose type N-glycans bearing the chitobiosyl unit, the endogenous substrates for plant endoglycosidase have not yet been identified. Recently we purified and characterized an endo-beta-N-acetylglucosaminidase from rice culture cells and identified the gene encoded. Furthermore, we found structural features of free N-glycans in the cells, indicating that high-mannose type species (Man(9-5)GlcNAc(1)) occur at concentration of several micromolar (microM). Hence, in this study we analyzed glycoform of N-glycans linked to glycoproteins expressed in rice culture cells to see whether endogenous glycoproteinous substrate occurs in reasonable amounts. Structural analysis revealed that more than 95% of total N-glycans linked to glycoproteins in the rice cells had the plant complex type structure, including Lewis a epitope-harboring type, although high-mannose type structures account for less than 5% of total N-glycans.  相似文献   

9.
We surveyed published reports on about 50 glycoproteins whose amino acid sequence, glycosylation sites, and type of glycosylation at a particular site have been established. We note that high-mannose substances were rarely found at the N-terminal side of a previously glycosylated complex site. There was a very definite distribution of complex sites about the N-terminal region. Furthermore, secreted glycoproteins usually contained only complex oligosaccharides whereas membrane proteins contained both types. We suggest that the position of the glycosylation site with respect to the N-terminus affects the extent of oligosaccharide processing and subsequent presentation of complex or high-mannose structures in the mature glycoprotein. This review relates glycosylation type to its position in the known sequence of given proteins and discusses these observations in light of known glycosylation processing reactions.  相似文献   

10.
Important differences in asparagine-linked glycopeptides were observed in vitro cultured fibroblasts derived from chick embryo at different stages of development. Cells from 8-day and 16-day embryos were labeled metabolically with [3H]mannose. Cell surface glycopeptides obtained after mild trypsin treatment were extensively digested with pronase and then chromatographed on concanavalin-A-Sepharose and other immobilized lectins. The most important changes concerned the complex type chains. The ratio between triantennary plus tetraantennary and biantennary chains increased about 2.5-fold from the 8th to the 16th day of development. In the same way, complex chains with bisecting N-acetylglucosamine increased from 8-day to 16-day cells as shown by Phaseolus-vulgaris-erythroagglutinin--agarose chromatography. In 16-day cells, the majority of triantennary chains (60%) with alpha-linked mannose substituted at C2 and C6 positions and biantennary chains (50%) were shown to contain fucosyl (alpha 1----6)N-acetylglucosaminyl structure in the core region by their ability to bind to a lentil lectin affinity column. Similarly, in 8-day cells, triantennary chains (50%) were more fucosylated than biantennary chains (35%). Thus, complex structures exhibited an increased fucosylation of their invariable core from the 8th to the 16th day of development, except for fucosylated triantennary chains which were retained on Phaseolus vulgaris Leucoagglutin and on lentil lectin. These latter structures were present at the surface of 8-day cells and absent at the surface of 16-day cells. After chromatography on Bio-Gel P6 and treatment with endo-beta-N-acetylglucosaminidase H, the [3H]-mannose-labeled glycopeptides were separated by high resolution chromatography into glycopeptides with complex chains and glycopeptides with high-mannose chains. Analysis of the high-mannose oligosaccharides released after endo-beta-N-acetylglucosaminidase H treatment by chromatography on Bio-Gel P4 indicated that the same type of high-mannose chains were present at the surface of 8-day and 16-day cells. Quantification of mannose, galactose and sialic acid residues using gas liquid chromatography was consistent with a decrease of the relative amount of oligomannose chains and an increase of the relative amount of complex type chains in 16-day cells compared to 8-day cells. Thus N-linked oligosaccharides derived from cell surface glycoproteins undergo changes during embryo development resulting in greater complexity of carbohydrate chains.  相似文献   

11.
The lectin-binding properties and glycosidase sensitivities of the virion glycoproteins of primate cytomegaloviruses (CMVs) were examined. Three simian CMV (SCMV) strains, including Colburn, and four human CMV (HCMV) strains were compared. Their proteins were separated in denaturing polyacrylamide gels and electrotransferred onto nitrocellulose, and the glycosylated species were visualized with iodinated concanavalin A or wheat germ agglutinin (WGA). Virions of both HCMV and SCMV strains contained six principal and several minor lectin-reactive bands. Neuraminidase treatment abolished WGA binding and reduced the charge and charge heterogeneity of the SCMV (i.e., Colburn) virion glycoproteins and had a similar, although less dramatic, effect on those of HCMV. The specificities of concanavalin A and WGA in these assays were evaluated with endo-beta-N-acetylglucosaminidase H and endo-beta-N-acetylglucosaminidase F, and a combination of lectins and glycosidases was used to demonstrate that many of the primate CMV glycoproteins contain both high-mannose and complex, N-linked oligosaccharides. Results suggest that the HCMV virion glycoproteins are more extensively glycosylated or have more completely processed carbohydrate side chains, or both, than their SCMV counterparts.  相似文献   

12.
The genome sequencing project on alkaliphilic Bacillus halodurans C-125 revealed a putative endo-beta-N-acetylglucosaminidase (Endo-BH), which consists of a signal peptide of 24 amino acids, a catalytic region of 634 amino acids exhibiting 50.1% identity with the endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A), and a C-terminal tail of 220 amino acids. Transformed Escherichia coli cells carrying the Endo-BH gene exhibited endo-beta-N-acetylglucosaminidase activity. Recombinant Endo-BH hydrolyzed high-mannose type oligosaccharides and hybrid type oligosaccharides, and showed transglycosylation activity. On deletion of 219 C-terminal amino acid residues of Endo-BH, the wild type level of activity was retained, whereas with deletions of the Endo-A homolog domain, the proteins were expressed as inclusion bodies and these activities were reduced. These results suggest that the enzymatic properties of Endo-BH are similar to those of Endo-A, and that the C-terminal tail does not affect the enzyme activity. Although the C-terminal tail region is not essential for enzyme activity, the sequence is also conserved among endo-beta-N-acetylglucosaminidases of various origins.  相似文献   

13.
In the presence of fluoroglucose, an inhibitor of formation of mannosylphosphoryl and glucosylphosphoryl-dolichol, lipid-dependent glycosylation of influenza virus glycoproteins is strongly, but not completely inhibited. The oligosaccharides that were transferred to protein in the presence of fluoroglucose came directly dolichol-linked intermediates. However, they were smaller than the normal high-mannose oligosaccharides and, furthermore, resistant towards digestion with endo-beta-N-acetylglucosaminidase H. By excluding mannosylphosphoryl-dolichol, similar dolichyl-pyrophosphate-liked intermediates were synthesized in vitro by membranes from fluoroglucose-treated cells and they were shown to glycosylate protein.  相似文献   

14.
We investigated the transglycosylation reaction of the recombinant endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) expressed in Candida boidinii using such sugar derivatives as N-acylated d-glucosamines, C-glucosyl derivatives, and a 2-O-glycosylated disaccharide as acceptors. We found that a variety of sugar derivatives modified at C-1 or C-2 could be used as acceptors for transglycosylation by Endo-M to create novel oligosaccharides.  相似文献   

15.
A facile synthesis of homogeneous CD52 glycoproteins carrying native N-glycans was achieved using an endolycosidase-catalyzed oligosaccharide transfer as the key step. The synthesis consists of two steps: the solid phase synthesis of GlcNAc-CD52 and the transfer of a high-mannose type or complex type N-glycan from Man(9)GlcNAc(2) Asn or a sialglycopeptide to the GlcNAc-CD52, under the catalysis of the endo-beta-N-acetylglucosaminidases from Arthrobacter (Endo-A) and Mucor hiemalis (Endo-M), respectively.  相似文献   

16.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

17.
The post-translational processing of pig small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in organ-cultured mucosal explants. Exposure of the explants to swainsonine, an inhibitor of Golgi mannosidase II, resulted in the formation of a Mr-160000 polypeptide, still sensitive to endo-beta-N-acetylglucosaminidase H. Swainsonine caused only a moderate inhibition of transport of the enzyme through the Golgi complex and the subsequent expression in the microvillar membrane. This may imply that the trimming of the high-mannose core and complex glycosylation of N-linked oligosaccharides is not essential for the transport of aminopeptidase N to its final destination. A different type of processing was observed to take place in the presence of swainsonine, resulting in a considerable increase in apparent Mr (from 140000 to 160000). This processing could not be ascribed to N-linked glycosylation, since treatment of the Mr-160000 polypeptide with endo-beta-N-acetylglucosaminidase H only decreased its apparent Mr by 15000. The susceptibility of the mature Mr-166000 polypeptide, but not the Mr-140000 polypeptide, to mild alkaline hydrolysis suggests that aminopeptidase N becomes glycosylated with O-linked oligosaccharides during its passage through the Golgi complex. Aminopeptidase N was not labelled by [3H]palmitic acid, indicating that the processing of the enzyme does not include acylation.  相似文献   

18.
Glycoproteins present in the soluble and organelle fractions of developing bean (Phaseolus vulgaris) cotyledons were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, affinoblotting, fractionation on immobilized concanavalin A (ConA), and digestion of the oligosaccharide side chains with specific glycosidases before and after protein denaturation. These studies led to the following observations. (a) Bean cotyledons contain a large variety of glycoproteins that bind to ConA. Binding to ConA can be eliminated by prior digestion of denatured proteins with α-mannosidase or endoglycosidase H, indicating that binding to ConA is mediated by high-mannose oligosaccharide side chains. (b) Bean cotyledons contain a large variety of fucosylated glycoproteins which bind to ConA. Because fucose-containing oligosaccharide side chains do not bind to ConA, such proteins must have both high-mannose and modified oligosaccharides. (c) For all the glycoproteins examined except one, the high-mannose oligosaccharides on the undenatured proteins are accessible to ConA and partially accessible to jack bean α-mannosidase. (d) Treatment of the native proteins with α-mannosidase removes only 1 or 2 mannose residues from the high-mannose oligosaccharides. Similar treatments of sodium dodecyl sulfate-denatured or pronase-digested glycoproteins removes all α-mannose residues. The results support the following conclusions: certain side chains remain unmodified as high-mannose oligosaccharides even though the proteins to which they are attached pass through the Golgi apparatus, where other oligosaccharide chains are modified. The chains remain unmodified because they are not accessible to processing enzymes such as the Golgilocalized α-mannosidase.  相似文献   

19.
Gene protein products of SA11 simian rotavirus genome   总被引:33,自引:18,他引:15  
When MA104 cells were infected with SA11 rotavirus, 12 protein classes, absent in mock-infected cells, could be distinguished by polyacrylamide gel electrophoresis. At least two of these proteins were glycosylated, and their synthesis could be blocked with tunicamycin. The oligosaccharides of both glycoproteins were cleaved by endo-beta-N-acetylglucosaminidase H, suggesting that they were residues of the "high-mannose" type. Of the 12 viral polypeptides observed in infected cells, 1 was probably the apoprotein of one of these glycoproteins; 5, including 1 glycoprotein, were structural components of the virions, whereas the other 6, including a second and possibly third glycoprotein, were nonstructural viral proteins. When the 11 double-stranded RNA genome segments of SA11 were translated, after denaturation, in an RNA-dependent cell-free translation system, at least 11 different polypeptides were synthesized. Ten of these polypeptides had electrophoretic migration patterns equal to those of viral proteins observed in tunicamycin-treated infected cells. Nine of the 11 double-stranded RNA genome segments were resolved by polyacrylamide gel electrophoresis and were translated individually. Two were not resolved from each other and therefore were translated together. Correlation of each synthesized polypeptide with an individual RNA segment allowed us to make a probable gene-coding assignment for the different SA11 genome segments.  相似文献   

20.
The distribution of the different types of oligosaccharides in cathepsin D and in beta-hexosaminidase synthesized in cultured human fibroblasts was studied by using endo-beta-N-acetylglucosaminidase H as a probe for high-mannose oligosaccharides. The enzymes were specifically labelled in the protein or the carbohydrate moiety. In both enzymes, resistant and cleavable oligosaccharides were found. The resistant oligosaccharides prevailed in the secreted enzymes. Precursor molecules of cathepsin D contained two oligosaccharide side chains. Multiple forms of the precursor are synthesized with both, one or none of two oligosaccharides sensitive to the action of the endo-beta-N-acetylglucosaminidase H. In fibroblasts unable to phosphorylate lysosomal enzymes (mucolipidosis II) the excessively secreted lysosomal enzymes contained predominantly oligosaccharides resistant to endo-beta-N-acetylglucosaminidase H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号