首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Individual variations in habitat use and morphology in brook charr   总被引:1,自引:1,他引:1  
The specific objectives of this study were to determine if there is individual specialization in habitat use by lacustrine brook charr Salvelinus fontinalis and if so, if specialization is related to fish morphology. Localizations of 28 brook charr equipped with thermosensitive radiotransmitters were recorded during three summers (1991, 1992, and 1993) in two lakes of the Mastigouche Reserve (Québec, Canada). Fifty per cent of the fish were found mainly in the benthic zone (hereafter benthic individuals), 18% in the pelagic zone (pelagic individuals), and 32% travelled regularly between the two zones (generalist individuals). The observed interindividual differences in habitat preference were related to differences in body morphology and coloration: (i) the pectoral fins of benthic and generalist individuals were significantly longer than those of pelagic ones; and (ii) the coloration of the lower flank of benthic and generalist individuals was silver-grey while that of pelagic individuals was red. The results of this study suggest that brook charr inhabiting oligotrophic lakes of the Canadian Shield exhibit trophic polymorphisms, where some individuals are specialists better adapted to feeding in the littoral zone whereas others are specialists better adapted to feeding in the pelagic zone. The potential for reproductive isolation between the two morphs is discussed.  相似文献   

3.
The idea that interspecific variation in trophic morphology among closely related species effectively permits resource partitioning has driven research on ecological radiation since Darwin first described variation in beak morphology among Geospiza. Marine turtles comprise an ecological radiation in which interspecific differences in trophic morphology have similarly been implicated as a pathway to ecopartition the marine realm, in both extant and extinct species. Because marine turtles are charismatic flagship species of conservation concern, their trophic ecology has been studied intensively using stable isotope analyses to gain insights into habitat use and diet, principally to inform conservation management. This legion of studies provides an unparalleled opportunity to examine ecological partitioning across numerous hierarchical levels that heretofore has not been applied to any other ecological radiation. Our contribution aims to provide a quantitative analysis of interspecific variation and a comprehensive review of intraspecific variation in trophic ecology across different hierarchical levels marshalling insights about realised trophic ecology derived from stable isotopes. We reviewed 113 stable isotope studies, mostly involving single species, and conducted a meta‐analysis of data from adults to elucidate differences in trophic ecology among species. Our study reveals a more intricate hierarchy of ecopartitioning by marine turtles than previously recognised based on trophic morphology and dietary analyses. We found strong statistical support for interspecific partitioning, as well as a continuum of intraspecific trophic sub‐specialisation in most species across several hierarchical levels. This ubiquity of trophic specialisation across many hierarchical levels exposes a far more complex view of trophic ecology and resource‐axis exploitation than suggested by species diversity alone. Not only do species segregate along many widely understood axes such as body size, macrohabitat, and trophic morphology but the general pattern revealed by isotopic studies is one of microhabitat segregation and variation in foraging behaviour within species, within populations, and among individuals. These findings are highly relevant to conservation management because they imply ecological non‐exchangeability, which introduces a new dimension beyond that of genetic stocks which drives current conservation planning. Perhaps the most remarkable finding from our data synthesis is that four of six marine turtle species forage across several trophic levels. This pattern is unlike that seen in other large marine predators, which forage at a single trophic level according to stable isotopes. This finding affirms suggestions that marine turtles are robust sentinels of ocean health and likely stabilise marine food webs. This insight has broader significance for studies of marine food webs and trophic ecology of large marine predators. Beyond insights concerning marine turtle ecology and conservation, our findings also have broader implications for the study of ecological radiations. Particularly, the unrecognised complexity of ecopartitioning beyond that predicted by trophic morphology suggests that this dominant approach in adaptive radiation research likely underestimates the degree of resource overlap and that interspecific disparities in trophic morphology may often over‐predict the degree of realised ecopartitioning. Hence, our findings suggest that stable isotopes can profitably be applied to study other ecological radiations and may reveal trophic variation beyond that reflected by trophic morphology.  相似文献   

4.
Piscivory has independently evolved numerous times amongst snakes, and therefore these animals provide a powerful opportunity to test for convergent evolution in a vertebrate feeding system. In this study, we integrate performance trials with comparative methods to test the hypothesis that piscivory drives convergence in trophic morphology and feeding performance among natricine snakes. Within and across species, increasing the relative length of the quadrate bone in the skull is positively and strongly linked to a reduction in the time needed to swallow large fish prey. Thus, our feeding experiments suggest that a longer quadrate bone enables snakes to better conform their head shape to the shape of the prey during swallowing. Ancestral diet reconstructions and phylogenetically corrected multiple regression analyses further reveal that evolutionary increases in piscivory are coupled to the evolution of relatively longer quadrates, and hence improved feeding performance on fish prey in these animals. The exploitation of similar dietary niches drives the evolution of convergent trophic morphologies and feeding performances in natricine snakes.  相似文献   

5.
  1. The partition of the ecological niche can enhance the coexistence of predators due to differences in how they exploit three main resources: food, space, and time, the latter being an axis that often remains unexplored.
  2. We studied niche segregation in a Mediterranean mesocarnivore community composed by Vulpes vulpes, Genetta genetta, Meles meles, and Herpestes ichneumon, addressing simultaneously different niche axes: the temporal, trophic, and spatial axes.
  3. We assessed temporal segregation between mesopredators and prey and between potential competitors, using camera trap data between 2018 and 2020 in a Mediterranean landscape in Southern Spain. We deployed camera traps in 35 stations in three sites with varying vegetation cover within Doñana National Park. We further examined the spatial overlap in activity centers and trophic preferences between potential competitors using diet information from studies performed in the study area.
  4. We found an overall temporal segregation between trophic generalist species, with species showing higher temporal overlap differing in their trophic preferences and/or showing limited spatial overlap. Furthermore, we observed an overall high overlap between the activity patterns of predators and their major prey in the area (the common genet vs. small mammals and the red fox vs. European rabbit).
  5. Our study suggests that coexistence of the different species that compose the mesocarnivore assemblage in Mediterranean landscapes can be facilitated by subtle differences along the three main niche axes, with temporal segregation being a most pronounced mechanism. Our findings reinforce the idea that the coexistence mechanisms underlying community structure are multidimensional.
  相似文献   

6.
Summary Resource partitioning of diet and habitat use was studied in the entire Amazonian ungulate community of Northeastern Peru, which comprises the red brocket deer (Mazama americana), grey brocket deer (M. gouazoubira), collared peccary (Tayassu tajacu), white-lipped peccary (T. pecari), and lowland tapir (Tapirus terrestris). Each ungulate species partitioned at least one type of resource from every other species. Digestive morphology had a greater influence on resource partitioning of diet than body size. Neither digestive morphology nor body size were related to segregation of habitats. However, species with similar diets partitioned habitats, whereas species with different diets often used the same type of forest. Increases in habitat breadth of ungulates were positively correlated with increases in dietary breadth.  相似文献   

7.
Although interspecific trophic interactions plays a principal role within elasmobranch communal nurseries, little is known over variation in foraging strategies adopted by young-of-year of sympatric species. To test the hypothesis of dietary resource partitioning between batoids within a communal nursery, we investigated two cownose ray species, Rhinoptera bonasus and R. brasiliensis, which occur in heterospecific groups, a strategy predicted to increase survival and foraging success. Using two biochemical tracers, fatty acids (FA) and stable isotopes (δ15N and δ13C), the combined effects of maternal investment and the formation of heterospecific groups implying competition for, or partitioning of available food resources were investigated. Through univariate and multivariate analyses of biochemical tracers in several tissues (fin clip, muscle, liver, red blood cells; RBC) and plasma, our results revealed significant interspecific differences in tracers between the two species. Total FAs (∑saturated FA, ∑monounsaturated FA and ∑polyunsaturated FA) and trophic biomarkers (i.e., docosahexaenoic acid, arachidonic acid, oleic acid and δ15N) were the principle tracers responsible for the differences detected. These data revealed that R. brasiliensis was less enriched in physiologically important essential FAs than R. bonasus. Our findings suggest that these congeneric species differ in maternal investment strategy and moderately partition food resources over relatively fine spatial scales within a single nursery habitat to limit competition. These results provide further knowledge on the foraging strategies adopted by batoids in communal nursery areas, information that is required for improving spatial conservation and management planning.  相似文献   

8.
Conspecific individuals inhabiting nearby breeding colonies are expected to compete strongly for food resources owing to the constraints imposed by shared morphology, physiology, and behavior on foraging strategy. Consequently, colony‐specific foraging patterns that effectively partition the available resources may be displayed. This study aimed to determine whether intraspecific resource partitioning occurs in two nearby colonies of Lesser Frigatebirds (Fregata ariel). A combination of stable isotope analysis and GPS tracking was used to assess dietary and spatial partitioning of foraging resources during the 2013 and 2014 breeding seasons. These results were compared to vessel‐derived estimates of prey availability, local primary productivity, and estimates of reproductive output to suggest potential drivers and implications of any observed partitioning. Isotopic data indicated a more neritic source of provisioned resources for near‐fledged chicks at an inshore colony, whereas their offshore counterparts were provisioned with resources with a more pelagic signal. Deep pelagic waters (>200 m) had higher availability of a preferred prey type despite a trend for lower primary productivity. Differences in foraging ecology between the two populations may have contributed to markedly different reproductive outputs. These findings suggest environmental context influences dietary and spatial aspects of foraging ecology. Furthermore, the effect of colony‐specific foraging patterns on population demography warrants further research.  相似文献   

9.
The feeding strategy, overlap and trophic interactions of four demersal catfishes inhabiting Cochin Estuary, Arius maculatus (n = 67), A. subrostratus (n = 63), A. arius (n = 21) and Mystus gulio (n = 69) were investigated through gut-content analyses. The indices of relative importance revealed that the prey items in their stomachs were dominated by crustaceans except in A. arius where molluscs constituted the major prey item. The highest diet and niche breadth values (3.93, 0.36 respectively) were recorded in A. subrostratus, while the lowest was recorded in A. arius (2.64, 0.23 respectively). Pianka's overlap, calculated through null models constructed by Ecosim 7.0, revealed significant niche overlap between A. maculatus and A. subrostratus (O–0.91, P < 0.001), between A. maculatus and M. gulio (O–0.72, P < 0.05) and between A. subrostratus and M.gulio (O–0.64 P < 0.05). However, no overlap was recorded between A. arius and other species. The trophic niche breadth along with prey specific abundance confirmed that these fishes are highly specific feeders. The present results on trophic level status indicate that these catfishes are mid-level carnivores that can be considered as moderate benthic mesopredators and are specialist feeders unlike most catfishes.  相似文献   

10.
Fish develop morphological specializations in their trophic and locomotor systems as a result of varying functional demands in response to environmental pressures at different life stages. These specializations should maximize particular performances in specialists, adapting them to their trophic and habitat niches at each ontogenetic stage. Because differential growth rates of the structural components comprised in the head are likely to be linked to the diet of a fish throughout its development, we investigated the ontogenetic development of two haplochromine cichlid species belonging to different trophic guilds. We employed geometric morphometric techniques to evaluate whether starting from morphologically similar fry they diverge into phenotypes that characterize trophic guilds and locomotor types. Our examination of overall body shape shows that certain specialized morphological features are already present in fry, whereas other traits diverge through ontogeny due to differences in species‐specific allometric variation. Allometric shape variation was found to be more relevant for the biter specialist than for the sucker morphotype. Our results confirm that phenotypic changes during ontogeny can be linked to dietary and habitat shifts in these fish. Furthermore, evidence for an integrated development of trophic and locomotor specializations in morphology was observed. J. Morphol. 276:860–871, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Vermetidae are a small family of warm-water sessile gastropods capable of building upright tubes (feeding-tubes) to take advantage of the water flow. Laboratory and field experiments carried out on some Mediterranean species ( Vermetus triquetrus, Vermetus granulatus and Serpulorbis arenaria ) suggest that these structures function as exploratory tubes built not only to receive a better water flow, but mainly to avoid obstacles. In fact, vermetids experimentally exposed in situ to different hydrodynamic conditions do not produce them, but do so in the presence of an obstacle, such as thalli during the massive spring algal growth. This strategy allows them to compete for a virtual space, not directly occupied by the vermetid itself but necessary to spread its mucous net. This interpretation may improve the inference of paleo-environmental events from shell morphology. When building a feeding-tube, vermetids first cut off a portion of the shell on the side towards which they prepare to turn, using their radula, and then produce a new tube formed by short segments, at different angles, till they have reached the desired direction. This process is confirmed by the presence of scars on the shell, composed by a succession of lamellae. The regular distribution of these scars on fossil Petaloconchus intortus , which lived in soft substrates, may be interpreted as a response to periodical anoxic crises or an increase in the sedimentation rates. Their great morphological plasticity makes vermetids close to colonial or modular animals. Thanks to their capability of expressing more than one growth-form, and of re-moulding their shell, they successfully compete for substrate space and are key-stone species in fringe habitats.  相似文献   

12.
Yap Siaw-Yang 《Hydrobiologia》1988,157(2):143-160
Statistical and mathematical models have been used to measure the subtle differences in food resources utilisation of fifteen (15) fish species at Bukit Merah Reservoir, Malaysia. The models employed are niche breadth, dietary overlap indices and discriminant analysis. A diet measure based on the relative importance index of food items was used for the analysis, to correct for biases of the single indices consisting of the volumetric, numerical and occurrence frequency. Niche breadth (Bi) indicating the diversity or breadth of the food resource gradient utilized by a fish classifies species as generalized feeders (Bi > 4.5), intermediate and specialized feeders (Bi < 2). Niche overlap (Oij) quantifying the sharing of food resource between two species varies from 0.07 to 0.81 and describes high dietary overlap (Oij > 0.60) for most fish at the reservoir; but Trichogaster pectoralis (Anabantidae) feeding on the plankton shows relatively low dietary overlap. A scatter plot and a territorial map of the discriminatory analysis on the dietary composition result in combination an objective basis for trophic classification of the fish community, and describe (1) Osteochilus hasselti and Puntius gonionotus as herbivores, (2) Oxyeleotris marmorata, Clarias batrachus, Ophicephalus striatus, Mystus planicep, and presumably Wallago leerii and Hampala macrolepidota as carnivores, (3) Puntius schwanenfeldii, Cyclocheilichthys apogon, and presumably Labiobarbus festiva as detritivores, (4) Notopterus notopterus as a generalist, and (5) Trichogaster pectoralis as a planktivore. This multivariate analysis is relatively superior to the traditional subjective method for trophic classification and discerning subtle differences objectively, though intermingling occur.  相似文献   

13.
The abundance, spatio-temporal distribution, and feeding of larvae were compared from two reproductively isolated dwarf and normal ecotypes of whitefish ( Coregonus sp.) to test the hypothesis that larval ecotypes should reduce competition by using different resources. Contrary to a priori expectations, trophic niche partitioning between larval populations was much less pronounced than previously reported for the adult stages of fish ecotypes, presumably due to the lack of competition acting at this stage, and related to non-limiting food resources. Because this study was conducted in a single year and a single lake, we cannot however, strictly rule out the possibility that resource-based competition and resulting niche partitioning may occur at the larval stage in these species complexes. Nevertheless, this suggests for the first time, that resource-based selection at the larval stage may be relatively unimportant compared to that occurring at older life-history stages in driving the divergence and the development of reproductive isolation in sympatric fish ecotypes.  相似文献   

14.
The diel variations in feeding behaviour and vertical distribution were determined for ten species of a tropical fish community in a shallow SE Sri Lankan reservoir. The fish community consisted of two introduced exotic tilapias and eight indigenous riverine species including five cyprinids, one clarid, one hemiramphid and one gobid. Multi-mesh gillnets dividing the water column in six depth strata were set with a six-hour interval throughout four 24-hour periods. The study of the diel variation in feeding behaviour was based on analysis of catch data, gut contents and gut fullness per setting time. The diel variation in vertical distribution was determined per species for each of the six depth-strata. Feeding behaviour and vertical distribution differed significantly among species and for most species throughout the 24-hour period. Feeding behaviour and vertical distribution were correlated. The status of whether or not a fish is feeding determines if the trophic and spatial resource dimensions are interrelated. Resource partitioning along the spatial dimension may reduce exploitative competition at the time of feeding, whereas it may limit interference competition or predation during non-feeding periods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Several factors influence the partitioning of trophic resources in ecological communities, such as morphology, evolutionary history, and resource availability. Although the effects of morphology, phylogeny, and resource availability on trophic ecology have long been explored by theoretical studies, little has been done to empirically test these relationships. Here, we tested whether phylogenetic and morphological distances correlate with trophic niche overlap using a path analysis of multiple partial regression of distance matrices. Also, we tested whether niche breadth is influenced by body size using Phylogenetic Generalized Least Squares analysis. Trophic niche overlap was better explained by morphology per se than by the phylogenetic distance. We also found that predator's body size influences niche breadth calculated considering prey traits and availability, but not when we do not include these availability data. Additionally, trophic niche breadth was usually smaller when we considered prey traits and availability, differently from niche overlap, whose values increased when we did not consider these data. Our findings show that the interpretation of trophic niche in communities changes if we consider availability data, affecting inferences about coexistence and trophic specialization. Our study contributes to understanding trophic specialization and emphasizes the importance of incorporating prey availability and their traits into diet analysis.  相似文献   

16.
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.  相似文献   

17.
18.
When different populations of the same bird species share non‐breeding habitats, competition for food may promote resource partitioning. We studied food choice by resident and migratory Blackcaps Sylvia atricapilla in sympatric wintering grounds in southern Spain. Resident Blackcaps have a larger bill, which may allow them to feed on a broader range of fruit sizes, and they may know the distribution of food better than do migrants. Based on fruit and bird counts, we transformed both fruit crop and bird abundance to a common energy currency. During two winters with low and high fruit production, available energy from fruit in mid‐January was estimated to be 80 and 1300 times, respectively, the daily requirements of Blackcaps. Furthermore, Blackcap numbers did not track between‐winter changes in fruit abundance during 10 consecutive years of monitoring, further suggesting that fruit food is not limiting. Analysis of food items from 760 samples of 717 individuals showed that migrants and residents fed primarily on fruits of Wild Olive Olea europaea sylvestris, the most energetic fruit resource. There was no evidence that the larger bills of resident Blackcaps provided any foraging benefit. Migratory Blackcaps fed on Wild Olives and invertebrates, two resources with high energetic and structural value, more frequently than did residents. This food choice could be more important for migratory Blackcaps because they have lower body mass to reduce wing load. Our results suggest that the wintering grounds of Blackcaps in Iberia provide abundant food that is used by sympatric migrants and residents without resource partitioning. Slight differences in food choice suggest that migrants might benefit from feeding on more nutritive food than residents to counteract the energetic constraints associated with a smaller body size.  相似文献   

19.
The aim of this study was to determine the trophic structure and nycthemeral variations in the diet of dominant fish species (Ariopsis felis, Bairdiella chrysoura, Micropogonias undulatus, Eucinostomus gula, Eucinostomus argenteus, Lagodon rhomboides and Sphoeroides testudineus) in Celestun Lagoon, a biosphere reserve located in the southern Gulf of Mexico, and influenced by freshwater seeps. A total of 1473 stomachs were analysed and nine trophic groups were recorded. Bray–Curtis analyses with analyses of similarity (ANOSIM) statistical tests were used to determine two groups of feeding guilds: zoobenthivores and omnivores, with significant differences between time and habitat. The relationships between fish feeding habits, size class and environmental variables were investigated using canonical correspondence analysis (CCA). Most of the species showed a low niche breadth with high specialization towards amphipod consumption, with the exception of L. rhomboides (0·60), which indicated generalist feeding. This study in a protected area is an important source of information for drawing up conservation policies in relation to the management of aquatic resources, and will aid in the establishment of priority areas for conservation.  相似文献   

20.
Identifying the factors that promote or preclude the evolution of resource polymorphism is essential for understanding the origins of diversity. Although such polymorphisms have long been viewed as an adaptive response to intraspecific competition, they are by no means ubiquitous, even in populations experiencing strong competition. In the present study, we examined a potentially important cost of resource polymorphism. Specifically, resource polymorphism typically entails the evolution of one or more resource‐use specialists, and these specialists may suffer more from competition with other specialists than generalists would with other generalists. Using spadefoot toad tadpoles as a model system, we combined stable isotope analyses with an experiment aiming to characterize dietary differences between alternative carnivore and omnivore morphs and to assess the potential ecological consequences of any such differences. We found that carnivores and omnivores represent alternative trophic specialists and generalists, respectively. We also established that the specialist morph (carnivores) experienced greater intramorph competition than the generalist morph (omnivores). We hypothesize that the greater intramorph competition faced by specialists stems ultimately from functional limitations associated with trophic specialization, which prevent specialists from switching to alternative resources when their resource is depleted. These costs may even preclude the evolution of distinct resource‐use specialists, and hence resource polymorphism, in certain populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号