共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. 1. Arbuscular mycorrhizal (AM) fungi can increase a number of plant traits to which pollinating insects are known to respond. These include total plant size, flower number, flower size, and amount of pollen produced.
2. It was hypothesised that these effects would lead to a different visitation rate of pollinating insects on mycorrhizal and non-mycorrhizal plants. To test this idea, three species of annual plants ( Centaurea cyanus , Tagetes erecta , and Tagetes patula ) were grown with and without AM fungi and the visits by pollinating insects were recorded over a 2-month period.
3. In all three species, mycorrhizal plants experienced a greater number of pollinator visits per flower per unit time. Diptera and Hymenoptera were the predominant insects and the latter order showed the strongest response.
4. Here, it is suggested that mycorrhizal fungi increase floral visitation rates by insects, but that the mechanism varies from one plant species to another. In C. cyanus , it appears to be due to flower number per plant, in T. patula it is individual inflorescence size, and in T. patula it is nectar standing crop per inflorescence. 相似文献
2. It was hypothesised that these effects would lead to a different visitation rate of pollinating insects on mycorrhizal and non-mycorrhizal plants. To test this idea, three species of annual plants ( Centaurea cyanus , Tagetes erecta , and Tagetes patula ) were grown with and without AM fungi and the visits by pollinating insects were recorded over a 2-month period.
3. In all three species, mycorrhizal plants experienced a greater number of pollinator visits per flower per unit time. Diptera and Hymenoptera were the predominant insects and the latter order showed the strongest response.
4. Here, it is suggested that mycorrhizal fungi increase floral visitation rates by insects, but that the mechanism varies from one plant species to another. In C. cyanus , it appears to be due to flower number per plant, in T. patula it is individual inflorescence size, and in T. patula it is nectar standing crop per inflorescence. 相似文献
2.
Botir Khaitov José David Patiño‐Ruiz Tatiana Pina Peter Schausberger 《Ecology and evolution》2015,5(17):3756-3768
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores. 相似文献
3.
4.
The effects of arbuscular mycorrhizal colonization of Leucanthemum vulgare on parasitism of a leaf‐mining insect was studied in a field and a laboratory experiment. In the field, parasitism of Chromatomyia syngenesiae by Diglyphus isaea was lower on mycorrhizal plants, compared with plants where the association was reduced. A laboratory experiment, in which L. vulgare was inoculated with three species of AM fungi, showed that the effects on parasitism rates were mycorrhizal species‐dependent. Some fungal combinations increased parasitism, some decreased it, while others had no effect. It is concluded that the most likely cause of these differences is plant size, with parasitoid searching efficiency being reduced on the larger plants, resulting from certain mycorrhizal species combinations. However, a mycorrhizal effect on herbivore‐produced plant volatiles cannot be ruled out. 相似文献
5.
Rafael Jorge León Morcillo Juan A. Ocampo José M. García Garrido 《Plant signaling & behavior》2012,7(12):1584-1588
6.
Interactions between arbuscular mycorrhizal fungi and the hemiparasitic angiosperm Rhinanthus minor during co-infection of a host 总被引:3,自引:0,他引:3
The outcome of dual infection of the grass Lolium perenne L. by arbuscular mycorrhizal (AM) fungi and the parasitic angiosperm Rhinanthus minor L. was investigated in a glasshouse study. Colonization of L. perenne roots by AM fungi was significantly reduced by the presence of R. minor , as was host growth which fell by 44–51%. It was concluded that these two responses were linked, with AM colonization declining in response to the reduction in availability of host carbon. Parasite growth and reproductive output rose by 58% and 47% respectively when the hosts were mycorrhizal. These trends were unrelated to the attachment success of the parasite, but were accompanied by a significant increase in the formation of secondary haustoria. The benefits afforded the parasite when the hosts were mycorrhizal were attributed to increased carbon and nutrient flux resulting from alternations in sink strength. Host responses to parasitism and mycorrhizal colonization were not affected by the interaction between the two symbionts. However, the suggestion is made that the interaction between the AM fungi and parasite might have long-term ecological implications for the host species via its impact on parasite fecundity. 相似文献
7.
GLORIA BÁRZANA RICARDO AROCA JUAN MANUEL RUIZ‐LOZANO 《Plant, cell & environment》2015,38(8):1613-1627
The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split‐root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non‐physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems. Maize plants accumulated proline both, locally in roots affected by drought and systemically when the drought affected the whole root system, being the last effect ampler in AM plants. PIPs (plasma membrane intrinsic proteins) aquaporins were also differently regulated by drought in AM and non‐AM root compartments. When the drought affected only the AM root compartment, the rise of lipid peroxidation was restricted to such compartment. On the contrary, when the drought affected the non‐AM root fraction, the rise of lipid peroxidation was similar in both root compartments. Thus, the benefits of the AM symbiosis not only rely in a lower oxidative stress in the host plant, but it also restricts locally such oxidative stress. 相似文献
8.
9.
10.
红壤坡地杂草群落VA菌根真菌的宿主物种调查 总被引:12,自引:0,他引:12
本研究调查了红壤坡地幼龄果园杂草群落的物种多样性以及主要物种被VA菌根真菌的侵染率和侵染强度,分析了VA菌根真菌侵染与根际土壤磷系水平的关系。研究区域幼龄果园杂草群落共有杂草96种,分属27科。对17个科的39个物种的调查发现,所调查的物种均不同程度上被VA真菌所侵染,但科与科之间存在显著差异,同一科的不同种之间也差异明显。相关分析表明,VA菌根真菌对不同毁草种 的侵染率和侵染强度与土壤磷素水平关系不甚密切,VA菌根真菌强度可能主要决定于宿主植物特性和VA菌根真菌的选择。因此,在不影响农业生产的前提下,尽可能保持杂草的多样性将有利于VA菌根真菌的生存。 相似文献
11.
12.
Jeffery S. Bale Gregory J. Masters Ian D. Hodkinson Caroline Awmack † T. Martijn Bezemer Valerie K. Brown ‡ Jennifer Butterfield Alan Buse John C. Coulson John Farrar John E. G. Good Richard Harrington Susane Hartley § T. Hefin Jones Richard L. Lindroth Malcolm C. Press Ilias Symrnioudis Allan D. Watt John B. Whittaker 《Global Change Biology》2002,8(1):1-16
This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life‐history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term. 相似文献
13.
Cytoskeleton in mycorrhizal symbiosis 总被引:4,自引:0,他引:4
An understanding of the role played by the cytoskeleton in formation and function of mycorrhizas has been hampered by the technical difficulty of working with mycorrhizal material. Recently, however, improved labelling techniques suitable for both plant and fungal symbionts in combination with either epifluorescence microscopy or laser scanning confocal microscopy have resulted in new information. As well, molecular methods have made it possible to monitor changes of cytoskeletal elements during mycorrhiza development. Currently we know that the cytoskeletal systems of both plant and fungal partners undergo changes during both ecto- and endomycorrhizal symbiosis. However, little information is available concerning the regulatory factors or the cause and effect relationship of cytoskeletal changes and cellular events. In this article, research involving the cytoskeleton of mycorrhizas is reviewed in detail, whereas basic information of the cytoskeleton of plant and fungal cells is only briefly discussed as background. A brief comparison is also made between the information on mycorrhizas with that of biotrophic pathogenic fungi and the Rhizobium–legume symbiosis. 相似文献
14.
15.
福建红树林植物丛枝菌根侵染研究 总被引:1,自引:0,他引:1
2010年5月和12月,对福建沿海3个红树林生长区(洛阳江、九龙江口、漳江口)的红树林植物丛枝菌根(AM)侵染状况进行研究。结果表明:(1)红树林生长区中6种植物根内均发现AMF侵染结构,其中桐花树、秋茄、鱼藤和芦苇的丛枝为Arum(疆南星)型;(2)6种植物的丛枝菌根侵染率差异较大,老鼠簕的侵染率最高,鱼藤最低;(3)桐花树和秋茄的丛枝菌根侵染率呈显著差异,而其在不同生长区之间无差异;(4)桐花树和秋茄的丛枝菌根侵染率在不同时间呈显著差异,而钝草的丛枝菌根侵染率在不同时间的差异不显著。 相似文献
16.
通过对云南热带、亚热带生长的256种蕨类植物VA菌根的调查,发现蕨类植物VA菌根营养者所占的比例低于被子植物;在真蕨类植物中,植物具有由VA菌根营养经兼性VA菌根营养向自养方向进化的趋势。 相似文献
17.
In this study, the colonization of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) in 140 specimens of 32 hydrophytes collected from four lakes and four streams in southwest China were investigated. The arbuscular mycorrhizal fungi (AMF) and DSE colonization in these hydrophytes were rare. Typical AM structures were observed in one of the 25 hydrophytic species collected in lakes and six of the 17 species collected in streams. Spores of 10 identified AMF species and an unidentified Acaulospora sp. were isolated from the sediments. The identified AMF came from the four genera, Acaulospora, Gigaspora, Glomus and Scutellospora . Glomus and G. mosseae were the dominant genus and species respectively in these aquatic environments. The presence of DSE in hydrophytes was recorded for the first time. DSE occurred in one of the 25 hydrophyte species collected in lakes and three of the 17 species collected in streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution. 相似文献
19.
Bacteria producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase modulate plant ethylene levels. Decreased ethylene levels increase plant tolerance to environmental stresses and promote legume nodulation. On the contrary, the role of ethylene in mycorrhizal symbiosis establishment is still controversial. In this work, the ACC deaminase-producing strain Pseudomonas putida UW4 AcdS+ and its mutant AcdS(-), impaired in ACC deaminase synthesis, were inoculated alone or in combination with the AM fungus Gigaspora rosea on cucumber. Mycorrhizal and bacterial colonization as well as plant growth and morphometric parameters were measured. The influence of each microorganism on the photosynthetic efficiency was evaluated on the second and fourth leaf. The strain AcdS+, but not the AcdS(-) mutant, increased AM colonization and arbuscule abundance. The mycorrhizal fungus, but not the bacterial strains, promoted plant growth. However, the AcdS+ strain, inoculated with G. rosea, induced synergistic effects on plant biomass, total root length and total leaf projected area. Finally, the photosynthetic performance index was increased by the strain UW4 AcdS+ inoculated in combination with G. rosea BEG9. These results suggest a key role of this enzyme in the establishment and development of AM symbiosis. 相似文献
20.
丛枝菌根结构与功能研究进展 总被引:5,自引:0,他引:5
丛枝菌根(arbuscular mycorrhiza,AM)是陆地生态系统中分布最广泛、最重要的互惠共生体之一,对提高植物抗逆性、修复污染生境、保持生态系统稳定与可持续生产力的作用显著.AM结构特征是判断菌根形成的主要指标,与其功能密切相关.本文总结了AM丛枝结构、泡囊结构、菌丝结构和侵入点结构等发育特征;分析了A型丛枝结构、P型丛枝结构、泡囊结构和根外菌丝结构与促进寄主植物养分吸收和生长、提高植物抗旱性、耐涝性、耐盐性、抗高温、拮抗病原物、提高植物抗病性、抗重金属毒性、分解有毒有机物、修复污染与退化土壤等功能的关系,及其所发挥的重要作用;探讨了影响AM结构与功能的因子,以及基于AM不同结构所发挥功能的作用机制.旨在为系统研究AM真菌发育特征、AM真菌效能机制,以及评价和筛选AM真菌高效菌种提供依据. 相似文献