首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.  相似文献   

2.
Lung cancer mortality in the period of 1948-2002 has been analysed for 6,293 male workers of the Mayak Production Association, for whose information on smoking, annual external doses and annual lung doses due to plutonium exposures was available. Individual likelihoods were maximized for the two-stage clonal expansion (TSCE) model of carcinogenesis and for an empirical risk model. Possible detrimental and protective bystander effects on mutation and malignant transformation rates were taken into account in the TSCE model. Criteria for non-nested models were used to evaluate the quality of fit. Data were found to be incompatible with the model including a detrimental bystander effect. The model with a protective bystander effect did not improve the quality of fit over models without a bystander effect. The preferred TSCE model was sub-multiplicative in the risks due to smoking and internal radiation, and more than additive. Smoking contributed 57% to the lung cancer deaths, the interaction of smoking and radiation 27%, radiation 10%, and others cause 6%. An assessment of the relative biological effectiveness of plutonium was consistent with the ICRP recommended value of 20. At age 60 years, the excess relative risk (ERR) per lung dose was 0.20 (95% CI: 0.13; 0.40) Sv(-1), while the excess absolute risk (EAR) per lung dose was 3.2 (2.0; 6.2) per 10(4) PY Sv. With increasing age attained the ERR decreased and the EAR increased. In contrast to the atomic bomb survivors, a significant elevated lung cancer risk was also found for age attained younger than 55 years. For cumulative lung doses below 5 Sv, the excess risk depended linearly on dose. The excess relative risk was significantly lower in the TSCE model for ages attained younger than 55 than that in the empirical model. This reflects a model uncertainty in the results, which is not expressed by the standard statistical uncertainty bands.  相似文献   

3.
Some relatively new issues that augment the usual practice of ignoring model uncertainty, when making inference about parameters of a specific model, are brought to the attention of the radiation protection community here. Nine recently published leukaemia risk models, developed with the Japanese A-bomb epidemiological mortality data, have been included in a model-averaging procedure so that the main conclusions do not depend on just one type of model or statistical test. The models have been centred here at various adult and young ages at exposure, for some short times since exposure, in order to obtain specially computed childhood Excess Relative Risks (ERR) with uncertainties that account for correlations in the fitted parameters associated with the ERR dose–response. The model-averaged ERR at 1 Sv was not found to be statistically significant for attained ages of 7 and 12 years but was statistically significant for attained ages of 17, 22 and 55 years. Consequently, such risks when applied to other situations, such as children in the vicinity of nuclear installations or in estimates of the proportion of childhood leukaemia incidence attributable to background radiation (i.e. low doses for young ages and short times since exposure), are only of very limited value, with uncertainty ranges that include zero risk. For example, assuming a total radiation dose to a 5-year-old child of 10 mSv and applying the model-averaged risk at 10 mSv for a 7-year-old exposed at 2 years of age would result in an ERR = 0.33, 95% CI: −0.51 to 1.22. One model (United Nations scientific committee on the effects of atomic radiation report. Volume 1. Annex A: epidemiological studies of radiation and cancer, United Nations, New York, 2006) weighted model-averaged risks of leukaemia most strongly by half of the total unity weighting and is recommended for application in future leukaemia risk assessments that continue to ignore model uncertainty. However, on the basis of the analysis presented here, it is generally recommended to take model uncertainty into account in future risk analyses.  相似文献   

4.
A previous investigation has uncoupled the solid cancer risk coefficient for neutrons from the low dose estimates of the relative biological effectiveness (RBE) of neutrons and the photon risk coefficient, and has related it to two more tangible quantities, the excess relative risk (ERR1) due to an intermediate reference dose D1 = 1 Gy of gamma-rays and the RBE of neutrons, R1, against this reference dose. With tentatively assumed RBE values between 20 and 50 and in terms of organ-averaged doses--rather than the usually invoked colon doses--the neutron risk factor was seen to be in general agreement with the current risk estimate of the International Commission on Radiation Protection (ICRP). The present assessment of the risk coefficient for gamma-rays incorporates--in terms of the unchanged A-bomb dosimetry system, DS86--this treatment of the neutrons, but is otherwise largely analogous to the evaluation of the A-bomb data for the ICRP report and for the recent report of the United Nations Scientific Committee on the effects of ionizing radiation, UNSCEAR. The resulting central estimate of the lifetime attributable risk (LAR) for solid cancer mortality is 0.043/Gy for a working population (ages 25-65), and is nearly the same whether the age at exposure or the attained age model is used for risk projection. For a population of all ages 0.042/Gy is obtained with the attained age model and 0.068/Gy with the age at exposure model. The values do not include a dose and dose rate effectiveness factor (DDREF), and they are only half as large as the new UNSCEAR estimates of 0.082/Gy (attained age model and all ages) and 0.13/Gy (age at exposure model and all ages). The difference is only partly due to the more explicit treatment of the neutrons. It reflects also the fact that UNSCEAR has converted ERR into LAR in a way that differs from the ICRP procedure, and that it has summed the overall risk coefficient for solid tumor mortality and incidence from separate estimates for eight solid tumor categories, whereas the present study employs a combined computation for all solid tumors and uses the ICRP procedure for the conversion of ERR into LAR. The appendix gives results for the solid cancer incidence data.  相似文献   

5.
6.
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.  相似文献   

7.
This paper describes the Semipalatinsk historical cohort study and, in particular, examines the association between combined external and internal radiation exposure and esophagus cancer. Esophagus cancer is the most frequent single cancer site in the cause of death follow-up for the Semipalatinsk cohort. Set up in the 1960s, this historical cohort included 10 exposed settlements in the vicinity of the Semipalatinsk nuclear test site in East Kazakhstan as well as 6 comparison settlements in a low exposure area of the same region. The external and internal radiation doses to the population of the settlements under study were mainly due to local fallout from atmospheric nuclear testing (1949-1962). The database includes dosimetry and health information for 19.545 inhabitants of exposed and comparison villages in the Semipalatinsk region, comprising a total of 582.750 person-years of follow-up between 1960 and 1999. Cumulative effective dose estimates in this cohort range from 20 mSv to -4 Sv, with a mean dose of 634 mSv in the exposed group. Relative risks were calculated in terms of rate ratios, using a Poisson regression model for grouped person-time data. Esophagus cancer was found substantially elevated, with a statistically significant increase of the relative risk with dose and an ERR/Sv of 2.37 (1.45; 3.28) for the total cohort. If the data set was restricted to the exposed group only, the ERR/Sv was found considerably lower (0.18 (-0.16; 0.52)), whereas the dose-response remained significant only in women. Overall, our results based on the Semipalatinsk historical cohort indicate an association between fallout exposure and the risk of esophagus cancer that should be further investigated.  相似文献   

8.
This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.  相似文献   

9.
Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.  相似文献   

10.
Cancer mortality risk coefficients for neutrons have recently been assessed by a procedure that postulates for the neutrons a linear dose dependence, invokes the excess risk of the A-bomb survivors at a gamma-ray dose D(1) of 1 Gy, and assumes a neutron RBE as a function of D(1) between 20 and 50. The excess relative risk (ERR) of 0.008/mGy has been obtained for R(1) = 20 and 0.016/mGy for R(1) = 50. To compare these results to the current ICRP nominal risk coefficient for solid cancer mortality (0.045/Sv for a population of all ages; 0.036/Sv for a working population), the ERR is translated into lifetime attributable risk and is then related to effective dose. The conversion is not trivial, because the neutron effective dose has been defined by ICRP not as a weighted genuine neutron dose (neutron kerma), but as a weighted dose that includes the dose from gamma rays that are induced by neutrons in the body. If this is accounted for, the solid cancer mortality risk for a working population is found to agree with the ICRP nominal risk coefficient for neutrons in their most effective energy range, 0.2 MeV to 0.5 MeV. In radiation protection practice, there is an added level of safety, because the effective dose, E, is-for monitoring purposes-assessed in terms of the operational quantity H*, which overestimates E substantially for neutrons between 0.01 MeV and 2 MeV.  相似文献   

11.
Ionizing radiation is an established risk factor for brain tumors, yet quantitative information on the long-term risk of different types of brain tumors is sparse. Our aims were to assess the risk of radiation-induced malignant brain tumors and benign meningiomas after childhood exposure and to investigate the role of potential modifiers of that risk. The study population included 10,834 individuals who were treated for tinea capitis with X rays in the 1950s and two matched nonirradiated groups, comprising population and sibling comparison groups. The mean estimated radiation dose to the brain was 1.5 Gy. Survival analysis using Poisson regression was performed to estimate the excess relative and absolute risks (ERR, EAR) for brain tumors. After a median follow-up of 40 years, an ERR/Gy of 4.63 and 1.98 (95% CI = 2.43-9.12 and 0.73-4.69) and an EAR/Gy per 10(4) PY of 0.48 and 0.31 (95% CI = 0.28-0.73 and 0.12-0.53) were observed for benign meningiomas and malignant brain tumors, respectively. The risk of both types of tumors was positively associated with dose. The estimated ERR/Gy for malignant brain tumors decreased with increasing age at irradiation from 3.56 to 0.47 (P = 0.037), while no trend with age was seen for benign meningiomas. The ERR for both types of tumor remains elevated at 30-plus years after exposure.  相似文献   

12.
The work focuses on the results of the analysis of the cancer incidence among the Chernobyl emergency workers residing in Russia during 1991-2001. The analysis is based on the data for the cohort of male emergency workers from 6 regions of Russia including 55718 persons with documented external radiation doses in the range of 0.001-0.3 Gy who worked within the 30-km zone in 1986-1987. The mean age at exposure for these persons was 34.8 years old and the mean external radiation dose 0.13 Gy. In this cohort 1370 cases of solid cancer were diagnosed. Three follow-up periods were considered: 1991-1995, 1996-2001 and 1991-2001. The second follow-up period was chosen to allow for a minimum latency period of 10 years. Risk assessments were performed for two control groups: the first control group ("external") represented incidence rates for corresponding ages in Russia in general and the second control group ("internal") consisted of emergency workers. The estimated standardized incidence ratio (SIR) is in good agreement with that of the control within 95% CI. The values of the excess relative risk per unit dose 1 Gy (ERR/Gy) for solid malignant neoplasms have been estimated to be 0.33 (95% CI: -0.39, 1.22) (internal control) for the follow-up period 1991-2001 and 0.19 (95% CI: -0.66, 1.27) for 1996-2001. The analysis of cancer morbidity was carried out for the cohort of 29003 emergency workers who took part in liquidation of the consequences of the Chernobyl accident from 26 April 1986 to 25 April 1987. It was shown that the excess relative risk of cancer deaths per unit dose 1 Sv (ERR/Sv) is equal to 1.52 (95% CI: 0.20, 2.85).  相似文献   

13.
A 15-Country collaborative cohort study was conducted to provide direct estimates of cancer risk following protracted low doses of ionizing radiation. Analyses included 407,391 nuclear industry workers monitored individually for external radiation and 5.2 million person-years of follow-up. A significant association was seen between radiation dose and all-cause mortality [excess relative risk (ERR) 0.42 per Sv, 90% CI 0.07, 0.79; 18,993 deaths]. This was mainly attributable to a dose-related increase in all cancer mortality (ERR/Sv 0.97, 90% CI 0.28, 1.77; 5233 deaths). Among 31 specific types of malignancies studied, a significant association was found for lung cancer (ERR/Sv 1.86, 90% CI 0.49, 3.63; 1457 deaths) and a borderline significant (P = 0.06) association for multiple myeloma (ERR/Sv 6.15, 90% CI <0, 20.6; 83 deaths) and ill-defined and secondary cancers (ERR/Sv 1.96, 90% CI -0.26, 5.90; 328 deaths). Stratification on duration of employment had a large effect on the ERR/Sv, reflecting a strong healthy worker survivor effect in these cohorts. This is the largest analytical epidemiological study of the effects of low-dose protracted exposures to ionizing radiation to date. Further studies will be important to better assess the role of tobacco and other occupational exposures in our risk estimates.  相似文献   

14.
15.
Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates.  相似文献   

16.
Aspects of radiation-induced lung cancer were evaluated in an international study of Hodgkin's disease. The study population consisted of 227 patients with lung cancer and 455 matched controls. Unique features included dose determinations to the specific location in the lung where each cancer developed and quantitative data on both chemotherapy and tobacco use obtained from medical records. The estimated excess relative risk (ERR) per Gy was 0.15 (95% CI: 0.06-0.39), and there was little evidence of departure from linearity even though lung doses for the majority of Hodgkin's disease patients treated with radiotherapy exceeded 30 Gy. The interaction of radiation and chemotherapy that included alkylating agents was almost exactly additive, and a multiplicative relationship could be rejected (P = 0.017). Conversely, the interaction of radiation and smoking was consistent with a multiplicative relationship, but not with an additive relationship (P < 0.001). The ERR/Gy for males was about four times that for females, although the difference was not statistically significant. There was little evidence of modification of the ERR/Gy by time since exposure (after a 5-year minimum latent period), age at exposure, or attained age. Because of the very high radiation doses received by Hodgkin's disease patients and the immunodeficiency inherent to this lymphoma and that associated with chemotherapy, generalizing these findings to other populations receiving considerably lower doses of radiation should be done cautiously.  相似文献   

17.
In this study the solid cancer mortality data in the Techa River Cohort in the Southern Urals region of Russia was analyzed. The cohort received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The Extended Techa River Cohort includes 29,849 people who resided along the Techa River between 1950 and 1960 and were followed from January 1, 1950 through December 31, 1999. The analysis was done within the framework of the biologically based two-stage clonal expansion (TSCE) model. It was found that about 2.6% of the 1854 solid cancer deaths (excluding 18 bone cancer cases) could be related to radiation exposure. At age 63, which is the mean age for solid cancer deaths, the excess relative risk (ERR) and excess absolute risk (EAR) were found to be 0.76 Gy(-1) (95% CI 0.23; 1.29) and 33.0 (10(4) PY Gy)(-1) (95% CI 9.8; 52.6), respectively. These risk estimates are consistent with earlier excess relative risk analyses for the same cohort. The change in the ERR with age was investigated in detail, and an increase in risk with attained age was observed. Furthermore, the data were tested for possible signs of genomic instability, and it was found that the data could be described equally well by a model incorporating effects of genomic instability. Results from the TSCE models indicated that radiation received at older ages might have stronger biological effects than exposure at younger ages.  相似文献   

18.
Ascertainment of breast cancer incidence among the cohort of the RERF Life Span Study extended sample identified 574 breast cancers among 564 cases diagnosed during 1950-1980 of which 412 cancers were reviewed microscopically. There were no dose-dependent differences with respect to diagnostic certainty or histological type. As in previous studies, the dose response appeared to be roughly linear and did not differ between the two cities. The most remarkable new finding was the emergence of a radiation-related excess among women under 10 years of age at exposure. The risk of radiogenic breast cancer appears to decrease with increasing age at exposure, whether expressed in relative or absolute terms. These results suggest that exposure of female breast tissue to ionizing radiation at any time during the first four decades of life, even during the premature stage, can cause breast cancer later in life, and that the length of time that tumor promoters such as endogenous hormones operate following exposure has an important influence on the development of radiation-induced breast cancer. An unresolved question is whether breast cancer risk is increased by radiation exposure at ages older than 40.  相似文献   

19.
The purpose of the present study was to analyze the thyroid cancer incidence risk after the Chernobyl accident and its degree of dependence on time and age. Data were analyzed for 1034 settlements in Ukraine and Belarus, in which more than 10 measurements of the (131)I content in human thyroids had been performed in May/June 1986. Thyroid doses due to the Chernobyl accident were assessed for the birth years 1968-1985 and related to thyroid cancers that were surgically removed during the period 1990-2001. The central estimate for the linear coefficient of the EAR dose response was 2.66 (95% CI: 2.19; 3.13) cases per 10(4) PY-Gy; for the quadratic coefficient, it was -0.145 (95% CI: -0.171; -0.119) cases per 10(4) PY-Gy(2). The EAR was found to be higher for females than for males by a factor of 1.4. It decreased with age at exposure and increased with age attained. The central estimate for the linear coefficient of the ERR dose response was 18.9 (95% CI: 11.1; 26.7) Gy(-1); for the quadratic coefficient, it was -1.03 (95% CI: -1.46; -0.60) Gy(-2). The ERR was found to be smaller for females than for males by a factor of 3.8 and decreased strongly with age at exposure. Both EAR and ERR were higher in the Belarusian settlements than in the Ukrainian settlements. In contrast to ERR, EAR increases with time after exposure. At the end of the observation period, excess risk estimates were found to be close to those observed in a major pooled analysis of seven studies of childhood thyroid cancer after external exposures.  相似文献   

20.
Breast cancer incidence rates after radiation exposure in eight large cohorts are described and compared. The nature of the exposures varies appreciably, ranging from a single or a small number of high-dose-rate exposures (Japanese atomic bomb survivors, U.S. acute post-partum mastitis patients, Swedish benign breast disease patients, and U.S. infants with thymic enlargement) to highly fractionated high-dose-rate exposures (two U.S. tuberculosis cohorts) and protracted low-dose-rate exposure (two Swedish skin hemangioma cohorts). There were 1,502 breast cancers among 77,527 women (about 35,000 of whom were exposed) with 1.8 million woman-years of follow-up. The excess risk depends linearly on dose with a downturn at high doses. No simple unified summary model adequately describes the excess risks in all groups. Excess risks for the thymus, tuberculosis, and atomic bomb survivor cohorts have similar temporal patterns, depending on attained age for relative risk models and on both attained age and age at exposure for excess rate models. Excess rates were similar in these cohorts, whereas, related in part to the low breast cancer background rates for Japanese women, the excess relative risk per unit dose in the bomb survivors was four times that in the tuberculosis or thymus cohorts. Excess rates were higher for the mastitis and benign breast disease cohorts. The hemangioma cohorts showed lower excess risks suggesting ameliorating dose-rate effects for protracted low-dose-rate exposures. For comparable ages at exposure (approximately 0.5 years), the excess risk in the hemangioma cohorts was about one-seventh that in the thymus cohort, whose members received acute high-dose-rate exposures. The results support the linearity of the radiation dose response for breast cancer, highlight the importance of age and age at exposure on the risks, and suggest a similarity in risks for acute and fractionated high-dose-rate exposures with much smaller effects from low-dose-rate protracted exposures. There is also a suggestion that women with some benign breast conditions may be at elevated risk of radiation-associated breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号