首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bis(3,5-dibromosalicyl) fumarate and a number of related bifunctional reagents react preferentially with oxyhemoglobin to cross-link the beta chains within the 2,3-diphosphoglycerate-binding site. In this report we describe a new derivative cross-linked between the alpha chains which is formed specifically in the reaction with deoxyhemoglobin. X-ray crystallographic studies show that the cross-link lies between Lys-99 alpha 1 and Lys-99 alpha 2, spanning the central cavity of the tetramer. Lys-99 alpha 1 and Lys-99 alpha 2 are located within a cluster of charged residues very near the middle of the hemoglobin molecule. In oxyhemoglobin, this site is completely inaccessible to the cross-linking agent. Competition experiments with inositol hexaphosphate indicate that the compound enters the central cavity in deoxyhemoglobin through the cleft between the alpha chains. Despite the presence of the cross-link between the alpha chains, the modified hemoglobin remains highly cooperative. The Hill coefficient for HbXL99 alpha is 2.6. The oxygen affinity of the cross-linked derivative is decreased by approximately 2-fold; at pH 7.0 in the presence of 0.1 M NaCl the P50 is 13.9 mm Hg compared to 6.6 mm Hg for HbA. This difference appears to be due to relatively small changes in both KR, the association constant for binding of oxygen to the R state, and the allosteric constant L. Surprisingly, the isoelectric point of oxyHbXL99 alpha is almost identical to that of oxyHbA, whereas in the deoxy form the isoelectric point of the cross-linked derivative is decreased relative to native hemoglobin as expected due to the loss of the two positive charges of the modified amino groups. In agreement with these findings, the alkaline Bohr effect of HbXL99 alpha is decreased by more than 50%. Earlier studies argue strongly against the possibility that Lys-99 alpha is directly responsible for this large fraction of the Bohr effect in HbA. Analysis of the structure suggests that in the cross-linked derivative Glu-101 beta, which is in close proximity to Lys-99 alpha in oxyhemoglobin, becomes an acid Bohr group.  相似文献   

2.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hemoglobin tetramers which cannot split into alphabeta dimers, because they are covalently cross-linked between the beta chains across the polyphosphate binding site, form complexes with haptoglobin. The reaction is biphasic as measured by fluorescence quenching and peroxidase activity. A complex in which one of the alpha beta dimers of the cross-linked hemoglobin is bound to one of the sites in the divalent haptoglobin molecule, is formed reversibly during the initial fast phase. In the subsequent slower step, this product then either polymerizes, adds another cross-linked hemoglobin molecule or, in the presence of excess haptoglobin, combines with a second haptoglobin molecule. This latter complex, in which two haptoglobin molecules are bridged by a cross-linked hemoglobin tetramer, can still combine with normal alpha beta dimers at the vacant haptoglobin combining sites. In spite of the very low oxygen affinity of the cross-linked hemoglobin, combination with haptoglobin shifts if oxygen affinity to the very high value of the normal hemoglobin-haptoglobin complex.  相似文献   

4.
Properties of carboxymethylated cross-linked hemoglobin A   总被引:2,自引:0,他引:2  
The selective carboxymethylation of the N-terminal amino groups of hemoglobin A with glyoxylic acid and sodium cyanoborohydride has been studied as a function of the state of ligation of hemoglobin. The N-terminal residues have been established as the primary sites of reaction by peptide mapping of the tryptic digest of each chain and subsequent amino acid analysis of the modified peptides. With oxyhemoglobin, the desired derivatives with a carboxymethyl group at the N-terminal of either or both chains amounted to 55% [Di Donato, A., Fantl, W. J., Acharya, A. S., & Manning, J. M. (1983) J. Biol. Chem. 258, 11890-11895]. In the present study it is shown that with deoxyhemoglobin the amount of the desired derivative is increased to 75%. The oxygen equilibrium curve of hemoglobin A carboxymethylated on its four N-terminal residues [0.5 mM as tetramer in 50 mM [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane (Bis-Tris), pH 7.5, 37 degrees C] had a P50 value of 30 mmHg (Hill coefficient n = 2.8, alkaline Bohr value = 0.4) compared to a P50 of 9 mmHg for unmodified hemoglobin under the same conditions (n = 2.5, alkaline Bohr value = 0.5). In carboxymethylated oxyhemoglobin A, cross-linked with the mild agent glycolaldehyde for 3.5 h, there was 85% of Mr 64,000 species and 15% of Mr 128,000 or higher species. For the former, the extent of cross-linking between two subunits was 19%. For the latter, there was 29% of two cross-linked subunits and 13% of three cross-linked subunits. Termination of cross-linking, which may be desirable in some circumstances, can be successfully achieved with isonicotinic acid hydrazide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The binding of carbon dioxide to human hemoglobin cross-linked between Lys alpha 99 residues with bis(3,5-di-bromosalicyl) fumarate was measured using manometric techniques. The binding of CO2 to unmodified hemoglobin can be described by two classes of sites with high and low affinities corresponding to the amino-terminal valines of the beta and alpha chains, respectively (Perrella, M., Kilmartin, J. V., Fogg, J., and Rossi-Bernardi, L. (1975b) Nature 256, 759-761. The cross-linked hemoglobin bound less CO2 than native hemoglobin at all CO2 concentrations in deoxygenated and liganded conformations, and the ligand-linked effect was reduced. Fitting the data to models of CO2 binding suggests that only half of the expected saturation with CO2 is possible. The remaining binding is described by a single affinity constant that for cross-linked deoxyhemoglobin is about two-thirds of the high affinity constant for deoxyhemoglobin A and that for cross-linked cyanomethemoglobin is equal to the high affinity constant for unmodified cyanomethemoglobin A or carbonmonoxyhemoglobin A. The low affinity binding constant for cross-linked hemoglobin in both the deoxygenated and liganded conformations is close to zero, which is significantly less than the affinity constants for either subunit binding site in unmodified hemoglobin. Comparing the low affinity sites in this modified hemoglobin to native hemoglobin suggests that cross-linking hemoglobin between Lys alpha 99 residues prevents CO2 binding at the alpha-subunit NH2 termini.  相似文献   

6.
The kinetics of O2 and CO binding to R-state human hemoglobin A0 and human hemoglobin cross-linked between the alpha chains at Lys99 residues were examined using ligand displacement and partial photolysis techniques. Oxygen equilibrium curves were measured by Imai's continuous recording method (Imai, K. (1981) Methods Enzymol. 76, 438-449). The rate of the R to T transition was determined after full laser photolysis of the carbon monoxide derivative by measuring the resultant absorbance changes at an isosbestic point for ligand binding. Chemical cross-linking caused the R-state O2 affinity of alpha subunits to decrease 6-fold compared with unmodified hemoglobin. This inhibition of O2 binding was the result of both a decrease in the rate constant for ligand association and an increase in the rate constant for dissociation. The O2 affinity of R-state beta subunits was reduced 2-fold because of an increase in the O2 dissociation rate constant. These changes were attributed to proximal effects on the R-state hemes as the result of the covalent cross-link between alpha chain G helices. This proximal strain in cross-linked hemoglobin was also expressed as a 5-fold higher rate for the unliganded R to T allosteric transition. The fourth O2 equilibrium binding constant, K4, measured by kinetic techniques, could be used to analyze equilibrium curves for either native or cross-linked hemoglobin. The resultant fitted values of the Adair constants, a1, a2, and a3 were similar to those obtained when K4 was allowed to vary, and the fits were of equal quality. When K4 was fixed to the kinetically determined value, the remaining Adair constants, particularly a3, became better defined.  相似文献   

7.
Using modulated excitation, we have measured the forward and reverse rates of the allosteric transition between relaxed (R) and tense (T) quaternary structures for triply ligated hemoglobin (Hb), cross-linked between the alpha chains at Lys 99. Oxygen, carbon monoxide, and water were used as ligands and were studied in phosphate and low Cl- bis-Tris buffers at neutral pH. Since the cross-link prohibits disproportionation, triply ligated aquomet Hb species with ferrous beta chains were specifically isolated by isoelectric focusing. Modulated excitation provides rate pairs and therefore gives equilibrium constants between quaternary structures. To coordinate with that information, oxygen binding curves of fully ferrous and tri-aquomet Hb were also measured. L3, the equilibrium constant between three liganded R and T structures, is determined by modulated excitation to be of order unity for O2 or CO (1.1 to 1.5 for 3O2 and 0.7 for 3CO bound), while with three aquomet subunits it is much greater (> or = 23). R-->T conversion rates are similar to those found for HbA, with weak sensitivity to changes in L3. The L3 values from HbXL O2 were used to obtain a unique allosteric decomposition of the ferrous O2 binding curve in terms of KT, KR, and L3. From these values and the O2 binding curve of tri-aquomet HbXL, L3 was calculated to be 2.7 for the tri-aquomet derivative. Consistency in L3 values between equilibrium and modulated excitation data for tri-aquomet-HbXL can be achieved if the equilibrium constant for O2 binding to the alpha chains is six times lower than that for binding to the beta chains in the R state, while the cooperative properties remain homogeneous. The results are in quantitative agreement with other studies, and suggest that the principal effect of the cross-link is to decrease the R state and T state affinity of the alpha subunits with almost no change in the affinity of the beta subunits, leaving the allosteric parameters L and c unchanged.  相似文献   

8.
The chemical modification of hemoglobin was conducted with the help of bifunctional crosslinking agent--glutaraldehyde. By SDS-polyacrylamide gel electrophoresis and gel-filtration it was shown that the final product contained 70% of modified protein which consisted of non-dissociating hemoglobin dimers and tetramers. It was also shown that the chemical modification didn't produce significant changes in the oxygen-transporting properties of the starting hemoglobin, but had influence on the character of the interaction with the allosteric regulator of reversible oxygenation (pyridoxal-5'-phosphate). The half-disappearance period in animals of the intramolecularly crosslinked hemoglobin was two times longer in comparison with the native protein.  相似文献   

9.
Hu D  Kluger R 《Biochemistry》2008,47(47):12551-12561
Hemoglobin-based oxygen carriers have been sought as stable, sterile alternatives to red cells in transfusions. Problems in clinical trials using cross-linked tetramers have led to proposals that larger assemblies of tetramers may alleviate some of the problems. A study of such assemblies requires materials with defined structures and physical properties. Evaluation of cross-linked bis-tetramers with inflexible linear links between the tetramers revealed that these have very low cooperativity in oxygen binding and would thus be inefficient as oxygen carriers. New, more flexible reagents were designed to cross-link and connect tetramers in two modes: with angular connectors that permit torsional movement (1-3) and with linear connectors that resemble previously studied systems (4-6). The resulting cross-linked bis-tetramers were produced in high yield and were isolated and characterized. Digest mapping showed that modifications were specifically introduced as expected at amino groups in the 2,3-bisphosphoglycerate binding sites within beta subunits. Circular dichroism showed that the secondary structure of the globin chains is maintained while the microenvironment of the hemes is altered. The bis-tetramers derived from 1-3 have oxygen affinity (P(50) = 3.6-4.7) and cooperativity (n(50) = 2.2-2.7) that appear to be suitable for efficient oxygen delivery to hypoxic regions along with increased mass that is expected to minimize extravasation.  相似文献   

10.
We studied the effects of diaspirin cross-linked hemoglobin (DCLHb), a cell-free hemoglobin derived from human erythrocytes, on blood flow distribution and tissue oxygen extraction capabilities in endotoxic shock. Eighteen pentobarbital sodium-anesthetized, mechanically ventilated dogs received 2 mg/kg of E. coli endotoxin, followed by saline resuscitation to restore cardiac filling pressures to baseline levels. The animals were randomly divided into three groups: six served as control, six received DCLHb at a dose of 500 mg/kg (group 1) and six DCLHb at a dose of 1,000 mg/kg (group 2). Cardiac tamponade was then induced by saline injection in the pericardial sac to progressively reduce cardiac index and thereby allow study of tissue oxygen extraction capabilities. DCLHb had a dose-dependent vasopressor effect but did not significantly alter cardiac index or regional blood flow. During cardiac tamponade, critical oxygen delivery was 12.8 +/- 0.7 ml. kg(-1). min(-1) in the control group, but 8.6 +/- 0.9 and 8.2 +/- 0.7 ml. kg(-1). min(-1) in groups 1 and 2, respectively (both P < 0.05 vs. control group). The critical oxygen extraction ratio was 39.1 +/- 3.1% in the control group but 58.7 +/- 12.8% and 60.2 +/- 9.0% in groups 1 and 2, respectively. We conclude that DCLHb can improve whole body oxygen extraction capabilities during endotoxic shock in dogs.  相似文献   

11.
The physicochemical characterization of metal complexed with chitosan (CS) and its glutaraldehyde cross-linked derivative (CSGA) was investigated. Seven metal ions from chromium through zinc of the first row of the transition metals were selected for complexation. Structural features pertinent to where and how metals bind into both polymers are our main interest. Studies using solid-state NMR spectroscopy and XRPD (X-ray powder diffraction) supported by ESR spectroscopy, ICP-OES (inductively couple plasma-optical emission spectroscopy) and far-FTIR spectroscopy for metal interaction with nitrogen sites at C-2 of the metal-polymer complexes were performed. Theoretical calculations of the metal-polymer ratio, the approximate charges on nitrogen for both amine and imino-linker, and the proton affinity between an alcohol group from the polymer and an amino/imino group are reported. A helical coiled chitosan model and a 2C1L (two-chitosans with one linker) model are proposed here. The metal uptake mechanism for both polymers is concluded to be absorption within the polymers, rather than adsorption on the polymer surface.  相似文献   

12.
Oxygen equilibrium curves of human hemoglobin Ao (HbAo) and human hemoglobin cross-linked between the alpha chains (alpha alpha Hb) by bis(3,5-dibromosalicyl) fumarate were measured as a function of pH and chloride or organic phosphate concentration. Compared to HbAo, the oxygen affinity of alpha alpha Hb was lower, cooperativity was maintained, although slightly reduced, and all heterotropic effects were diminished. The major effect of alpha alpha-cross-linking appears to be a reduction of the oxygen affinity of R-state hemoglobin under all conditions. However, while the oxygen affinity of T-state alpha alpha Hb was slightly reduced at physiologic chloride concentration and in the absence of organic phosphates, KT was the same for both hemoglobins in the presence of 2,3-diphosphoglycerate (or high salt) and higher for alpha alpha Hb in the presence of inositol hexaphosphate. The reduced O2 affinity arises from smaller binding constants for both T- and R-state alpha alpha Hb rather than through stabilization of the low affinity conformation. All four Adair constants could be determined for alpha alpha Hb under most conditions, but a3 could not be resolved for HbAo without constraining a4, suggesting that the cross-link stabilizes triply ligated intermediates of hemoglobin.  相似文献   

13.
The properties of human hemoglobin reacted with 2-nor-2-formylpyridoxal 5'-phosphate, a bifunctional derivative of pyridoxal 5'-phosphate, have been investigated both from an equilibrium and kinetic point of view. The experimental data, interpreted in terms of the two-state allosteric model, indicate that a perturbed R state is characteristic of this modified low ligand affinity hemoglobin. In flash photolysis experiments, a quickly reacting component is always observed, in spite of the lack of dissociation into free dimers; this kinetic behavior is thought to reflect the presence of functionally independent alpha beta dimers, still connected by the flexible cross-link but forming an open hemoglobin tetramer. Two possible models for the interpretation of the kinetics of CO and/or haptoglobin binding are presented and discussed.  相似文献   

14.
An anti-hemoglobin antiserum obtained from a sheep immunized with human carboxyhemoglobin A0 demonstrated little difference in its reactivity with deoxy- or carboxyhemoglobin A0. However, a subpopulation of this antiserum isolated by synthetic peptide affinity chromatography clearly distinguished between these two hemoglobin species. This subpopulation, designated alpha(129-141) anti-hemoglobin antibodies, represents less than 1% of the total anti-hemoglobin antibodies. They are nonprecipitating by Ouchterlony analysis, and fluorescence-quenching studies demonstrate the interaction of a single antibody binding site per hemoglobin dimer. These antibodies bind preferentially to carboxyhemoglobin with a median affinity constant of 5 X 10(8) M-1 compared to binding to deoxyhemoglobin with a binding affinity of less than 1 X 10(8) M-1. Furthermore, the presence of these antibodies in stoichiometric amounts increases the oxygen affinity of hemoglobin, and thus antibody and oxygen binding to hemoglobin can be considered as a linked function.  相似文献   

15.
L R Manning  J M Manning 《Biochemistry》1988,27(17):6640-6644
The ligation state of hemoglobin during its cross-linking by glycolaldehyde influences the ultimate oxygen affinity of the cross-linked protein. Thus, if the cross-linking is performed with carbonmonoxy-hemoglobin, the oxygen affinity increases slightly to a P50 of 7 mmHg from a P50 of 9 mmHg for unmodified hemoglobin. In contrast, when deoxyhemoglobin is cross-linked with glycolaldehyde, the oxygen affinity of the product decreases (P50 = 15 mmHg). When deoxyhemoglobin is first carboxymethylated and then cross-linked with glycolaldehyde, an even lower oxygen affinity is achieved (P50 = 23 mmHg). Carboxymethylated hemoglobin is very responsive to the presence of 5% CO2 with a P50 of 33 mmHg, which is lowered further to 42 mmHg when chloride (0.1 M) is also present. Hemoglobin carboxymethylated and cross-linked under anaerobic conditions is also responsive to the modulators CO2 and chloride with a resultant oxygen affinity of 27 mmHg. The type of cross-linking of liganded hemoglobin by the mild reagent glycolaldehyde is dependent upon the initial hemoglobin concentration. Thus, with dilute hemoglobin (45 microM in tetramer), cross-linking by glycolaldehyde (50 mM) results in about 75% of 64,000 molecular weight species (some of which are cross-linked within tetramer) and 25% of intertetrameric cross-linked species with a range of molecular weights averaging 128,000-512,000. With hemoglobin solutions of higher concentration (360 microM), the amount of the higher molecular weight species increases to about 65% with a corresponding reduction to 35% in the 64,000 molecular weight component.  相似文献   

16.
17.
The contribution of hepatic glycogen to lipogenesis was studied in isolated, intact rat hepatocytes. To establish its importance as a substrate for lipogenesis, the glycogen of isolated hepatocytes was prelabelled with 14C from glucose. Evidence is presented that neither glucose nor glycogen constitute major sources of carbon for de novo synthesis of fatty acids and that less than 1% of glycogen is converted into fatty acids.  相似文献   

18.
1. Current procedures for the isolation of native chains of hemoglobin employ two ion exchange columns for each chain and result in readily autoxidizable chains with measurable contamination by Hb and Hg. 2. In the new procedure, altered buffer conditions on the first column reduce Hb contamination from 2 to 5% to less than 1%, the limit of detectability. 3. The second column and lengthy washes with beta mercaptoethanol are replaced by incubation with DTT for 1 min for alpha chains and, for beta chains, three incubations with DTT and separations by gel-filtration. The residual Hg is less than 0.1%. 4. Oxidations in the previous procedure resulted in low yields and unreliable spectroscopic assessments of bound Hg. The new procedure resulted in a simple UV assay for Hg-free chains. 5. Hemoglobin reconstituted from these oxy-chains was identical to native Hb in oxygen binding equilibria and in the kinetics of CO binding following laser photolysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号