首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In order to test the hypothesis that fish-eye disease (FED) is due to a deficient activation of lecithin:cholesterol acyltransferase (LCAT) by its co-factor apolipoprotein (apo) A-I, we overexpressed the natural mutants T123I, N131D, N391S, and other engineered mutants in Cos-1 cells. Esterase activity was measured on a monomeric phospholipid enelogue, phospholipase A(2) activity was measured on reconstituted high density lipoprotein (HDL), and acyltransferase activity was measured both on rHDL and on low density lipoprotein (LDL). The natural FED mutants have decreased phospholipase A(2) activity on rHDL, which accounts for the decreased acyltransferase activity previously reported. All mutants engineered at positions 131 and 391 had decreased esterase activity on a monomeric substrate and decreased acyltransferase activity on LDL. In contrast, mutations at position 123 preserved these activities and specifically decreased phospholipase A(2) and acyltransferase activites on rHDL. Mutations of hydrophilic residues in amphipathic helices alpha 3;-4 and alpha His to an alanine did not affect the mutants' activity on rHDL. Based upon the 3D model built for human LCAT, we designed a new mutant F382A, which had a biochemical phenotype similar to the natural T123I FED mutant.These data suggest that residues T123 and F382, located N-terminal of helices alpha 3-4 and alpha His, contribute specifically to the interaction of LCAT with HDL and possibly with its co-factor apoA-I. Residues N131 and N391 seem critical for the optimal orientation of the two amphipathic helices necessary for the recognition of a lipoprotein substrate by the enzyme.  相似文献   

2.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

3.
On the basis of structural homology calculations, we previously showed that lecithin:cholesterol acyltransferase (LCAT), like lipases, belongs to the alpha/beta hydrolase fold family. As there is higher sequence conservation in the N-terminal region of LCAT, we investigated the contribution of the N- and C-terminal conserved basic residues to the catalytic activity of this enzyme. Most basic, and some acidic residues, conserved among LCAT proteins from different species, were mutated in the N-terminal (residues 1;-210) and C-terminal (residues 211;-416) regions of LCAT. Measurements of LCAT-specific activity on a monomeric substrate, on low density lipoprotein (LDL), and on reconstituted high density lipoprotein (rHDL) showed that mutations of N-terminal conserved basic residues affect LCAT activity more than those in the C-terminal region. This agrees with the highest conservation of the alpha/beta hydrolase fold and structural homology with pancreatic lipase observed for the N-terminal region, and with the location of most of the natural mutants reported for human LCAT. The structural homology between LCAT and pancreatic lipase further suggests that residues R80, R147, and D145 of LCAT might correspond to residues R37, K107, and D105 of pancreatic lipase, which form the salt bridges D105-K107 and D105-R37. Natural and engineered mutations at residues R80, D145, and R147 of LCAT are accompanied by a substantial decrease or loss of activity, suggesting that salt bridges between these residues might contribute to the structural stability of the enzyme.  相似文献   

4.
Lecithin cholesterol acyltransferase (LCAT) is an interfacial enzyme active on both high-density (HDL) and low-density lipoproteins (LDL). Threading alignments of LCAT with lipases suggest that residues 50-74 form an interfacial recognition site and this hypothesis was tested by site-directed mutagenesis. The (delta56-68) deletion mutant had no activity on any substrate. Substitution of W61 with F, Y, L or G suggested that an aromatic residue is required for full enzymatic activity. The activity of the W61F and W61Y mutants was retained on HDL but decreased on LDL, possibly owing to impaired accessibility to the LDL lipid substrate. The decreased activity of the single R52A and K53A mutants on HDL and LDL and the severer effect of the double mutation suggested that these conserved residues contribute to the folding of the LCAT lid. The membrane-destabilizing properties of the LCAT 56-68 helical segment were demonstrated using the corresponding synthetic peptide. An M65N-N66M substitution decreased both the fusogenic properties of the peptide and the activity of the mutant enzyme on all substrates. These results suggest that the putative interfacial recognition domain of LCAT plays an important role in regulating the interaction of the enzyme with its organized lipoprotein substrates.  相似文献   

5.
It has been shown that estrogens need to be metabolized to their hydrophobic estrogen ester derivatives to act as antioxidants in lipoproteins. Data suggest that 17beta-estradiol (E(2)) becomes esterified in LCAT-induced reactions and the esters are transported from HDL particles to LDL and VLDL particles by a CETP-dependent mechanism. In the present study we have further investigated the regulation of E(2) esterification by LCAT and focused on the importance of HDL structure and composition in the esterification process. Isolated LDL, HDL(2), HDL(3), and reconstituted discoidal HDL (rHDL) were incubated with labeled E(2), with and without purified LCAT, at 37 degrees C for 24 h. After purification of the lipoprotein fractions, there was a significant peak of radioactivity representing esterified estradiol attached to HDL(3) and rHDL, but HDL(2) and LDL contained only trace amounts of labeled estradiol ester. TLC analysis confirmed that the radioactivity migrated in a position corresponding to that of 17beta-E(2) 17-monoester standard. The amount of radioactivity associated with HDL(3) and rHDL representing esterified E(2) was significantly increased by addition of purified LCAT. However, only limited increases of radioactivity were observed in HDL(2) and LDL. In conclusion, HDL subfractions differ in their potential to regulate estradiol esterification by LCAT.  相似文献   

6.
Jin L  Shieh JJ  Grabbe E  Adimoolam S  Durbin D  Jonas A 《Biochemistry》1999,38(47):15659-15665
Binding of lecithin cholesterol acyltransferase (LCAT) to lipoprotein surfaces is a key step in the reverse cholesterol transport process, as the subsequent cholesterol esterification reaction drives the removal of cholesterol from tissues into plasma. In this study, the surface plasmon resonance method was used to investigate the binding kinetics and affinity of LCAT for lipoproteins. Reconstituted high-density lipoproteins (rHDL) containing apolipoprotein A-I or A-II, (apoA-I or apoA-II), low-density lipoproteins (LDL), and small unilamellar phosphatidylcholine vesicles, with biotin tags, were immobilized on biosensor chips containing streptavidin, and the binding kinetics of pure recombinant LCAT were examined as a function of LCAT concentration. In addition, three mutants of LCAT (T123I, N228K, and (Delta53-71) were examined in their interactions with LDL. For the wild-type LCAT, binding to all lipid surfaces had the same association rate constant, k(a), but different dissociation rate constants, k(d), that depended on the presence of apoA-I (k(d) decreased) and different lipids in LDL. Furthermore, increased ionic strength of the buffer decreased k(a) for the binding of LCAT to apoA-I rHDL. For the LCAT mutants, the Delta53-71 (lid-deletion mutant) exhibited no binding to LDL, while the LCAT-deficiency mutants (T123I and N228K) had nearly normal binding to LDL. In conclusion, the association of LCAT to lipoprotein surfaces is essentially independent of their composition but has a small electrostatic contribution, while dissociation of LCAT from lipoproteins is decreased due to the presence of apoA-I, suggesting protein-protein interactions. Also, the region of LCAT between residues 53 and 71 is essential for interfacial binding.  相似文献   

7.
Apolipoprotein A-I (apoA-I), the major protein in high density lipoprotein (HDL) regulates cholesterol homeostasis and is protective against atherosclerosis. An examination of the amino acid sequence of apoA-I among 21 species shows a high conservation of positively and negatively charged residues within helix 6, a domain responsible for regulating the rate of cholesterol esterification in plasma. These observations prompted an investigation to determine if charged residues in helix 6 maintain a structural conformation for protein-protein interaction with lecithin-cholesterol acyltransferase (LCAT) the enzyme for which apoA-I acts as a cofactor. Three apoA-I mutants were engineered; the first, (3)/(4) no negative apoA-I, eliminated 3 of the 4 negatively charged residues in helix 6, no negative apoA-I (NN apoA-I) eliminated all four negative charges, while all negative (AN apoA-I) doubled the negative charge. Reconstituted phospholipid-containing HDL (rHDL) of two discrete sizes and compositions were prepared and tested. Results showed that LCAT activation was largely influenced by both rHDL particle size and the net negative charge on helix 6. The 80 A diameter rHDL showed a 12-fold lower LCAT catalytic efficiency when compared to 96 A diameter rHDL, apparently resulting from an increased protein-protein interaction, at the expense of lipid-protein association on the 80 A rHDL. When mutant apoproteins were compared bound to the two different sized rHDL, a strong inverse correlation (r = 0.85) was found between LCAT catalytic efficiency and apoA-I helix 6 net negative charge. These results support the concept that highly conserved negatively charged residues in apoA-I helix 6 interact directly and attenuate LCAT activation, independent of the overall particle charge.  相似文献   

8.
Fluorescence spectroscopy has been used to investigate the conformational changes that occur upon binding of wild type (WT) and mutant (Thr123Ile) lecithin:cholesterol acyltransferase (LCAT) to the potential substrates (dioleoyl-phosphatidyl choline [DOPC] and high density lipoprotein [HDL]). For a detailed analysis of structural differences between WT and mutant LCAT, we performed decompositional analysis of a set of tryptophan fluorescence spectra, measured at increasing concentrations of external quenchers (acrylamide and KI). The data obtained show that Thr123Ile mutation in LCAT leads to a conformation that is likely to be more rigid (less mobile/flexible) than that of the WT protein with a redistribution of charged residues around exposed tryptophan fluorophores. We propose that the redistribution of charged residues in mutant LCAT may be a major factor responsible for the dramatically reduced activity of the enzyme with HDL and reconstituted high density lipoprotein (rHDL).  相似文献   

9.
Apolipoprotein E (apoE) enters the plasma as a component of discoidal HDL and is subsequently incorporated into spherical HDL, most of which contain apoE as the sole apolipoprotein. This study investigates the regulation, origins, and structure of spherical, apoE-containing HDLs and their remodeling by cholesteryl ester transfer protein (CETP). When the ability of discoidal reconstituted high density lipoprotein (rHDL) containing apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein to act as substrates for LCAT were compared with that of discoidal rHDL containing apoA-I [(A-I)rHDL], the rate of cholesterol esterification was (A-I)rHDL > (E2)rHDL approximately (E3)rHDL > (E4)rHDL. LCAT also had a higher affinity for discoidal (A-I)rHDL than for the apoE-containing rHDL. When the discoidal rHDLs were incubated with LCAT and LDL, the resulting spherical (E2)rHDL, (E3)rHDL, and (E4)rHDL were larger than, and structurally distinct from, spherical (A-I)rHDL. Incubation of the apoE-containing spherical rHDL with CETP and Intralipid(R) generated large fusion products without the dissociation of apoE, whereas the spherical (A-I)rHDLs were remodeled into small particles with the formation of lipid-poor apoA-I. In conclusion, i) apoE activates LCAT less efficiently than apoA-I; ii) apoE-containing spherical rHDLs are structurally distinct from spherical (A-I)rHDL; and iii) the CETP-mediated remodeling of apoE-containing spherical rHDL differs from that of spherical (A-I)rHDL.  相似文献   

10.
The central region of apolipoprotein A-I (apoA-I), spanning residues 143--165, has been implicated in lecithin:cholesterol acyltransferase (LCAT) activation and also in high density lipoprotein (HDL) structural rearrangements. To examine the role of individual amino acids in these functions, we constructed, overexpressed, and purified two additional point mutants of apoA-I (P143R and R160L) and compared them with the previously studied V156E mutant. These mutants have been reported to occur naturally and to affect HDL cholesterol levels and cholesterol esterification in plasma. The P143R and R160L mutants were effectively expressed in Escherichia coli as fusion proteins and were isolated in at least 95% purity. In the lipid-free state, the mutants self-associated similarly to wild-type protein. All the mutants, including V156E, were able to lyse dimyristoylphosphatidylcholine liposomes. In the lipid-bound state, the major reconstituted HDL (rHDL) of the mutants had diameters similar to wild type (96--98 A). Circular dichroism and fluorescence methods revealed no major differences among the structures of the lipid-free or lipid-bound mutants and wild type. In contrast, the V156E mutant had exhibited significant structural, stability, and self-association differences compared with wild-type apoA-I in the lipid-free state, and formed rHDL particles with larger diameters. In this study, limited proteolytic digestion with chymotrypsin showed that the V156E mutant, in lipid-free form, has a distinct digestion pattern and surface exposure of the central region, compared with wild type and the other mutants. Reactivity of rHDL with LCAT was highest for wild type (100%), followed by P143R (39%) and R160L (0.6%). Tested for their ability to rearrange into 78-A particles, the rHDL of the two mutants (P143R and R160L) behaved normally, compared with the rHDL of V156E, which showed no rearrangement after the 24-h incubation with low density lipoprotein (LDL). Similarly, the rHDL of V156E was resistant to rearrangement in the presence of apoA-I or apoA-II. These results indicate that structural changes are absent or modest for the P143R and R160L mutants, especially in rHDL form; that these mutants have normal conformational adaptability; and that LCAT activation is obliterated for R160L.Thus, individual amino acid changes may have markedly different structural and functional consequences in the 143--165 region of apoA-I. The R160L mutation appears to have a direct effect in LCAT activation, while the P143R mutation results in only minor structural and functional effects. Also, the processes for LCAT activation and hinge mobility appear to be distinct even if the same region of apoA-I is involved. -- Cho, K-H., D. M. Durbin, and A. Jonas. Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements. J. Lipid Res. 2001. 42: 379--389.  相似文献   

11.
The substrate properties of low-density lipoprotein (LDL) fractions from human and pig plasma and of lipoprotein a [Lp(a)] upon incubation with either pig or human lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) were investigated and compared with those of pig high-density lipoproteins (HDL) or human HDL-3. The cholesterol esterification using purified native pig LDL-1, human LDL, or Lp(a) as a substrate was approximately 36-42% that of pig HDL or human HDL-3, while cholesteryl ester formation with pig LDL-2 was 41-47%. No significant difference was found in the substrate activity between pig HDL and human HDL-3, and between human LDL and Lp(a), respectively. After depletion of pig LDL-1, pig LDL-2, and human LDL from apolipoprotein A-I (apoA-I), cholesteryl ester formation decreased to about 22-28% of the value found with pig HDL. Depletion of human LDL from apolipoprotein E (apoE) did not result in significantly different esterification rates in comparison to native LDL. Total removal of non-apoB proteins from human LDL resulted in esterification rates of approximately 10-15% that of HDL. Readdition of apoA-I to all these LDL fractions produced solely in apoA-I-depleted LDL fractions an increase of cholesteryl ester formation, whereas in those LDL fractions that were additionally depleted from apoE and/or from apoC polypeptides, a further decrease in the esterification rate occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Apolipoprotein (apo) C-III is a marker protein of triacylglycerol (TG)-rich lipoproteins and high-density lipoproteins (HDL), and has been proposed as a risk factor of coronary heart disease. To compare the physiologic role of reconstituted HDL (rHDL) with or without apoC-III, we synthesized rHDL with molar ratios of apoA-I:apoC-III of 1:0, 1:0.5, 1:1, and 1:2. Increasing the apoC-III content in rHDL produced smaller rHDL particles with a lower number of apoA-I molecules. Furthermore, increasing the molar ratio of apoC-III in rHDL enhanced the surfactant-like properties and the ability to lyse dimyristoyl phosphatidylcholine. Furthermore, rHDL containing apoC-III was found to be more resistant to particle rearrangement in the presence of low-density lipoprotein (LDL) than rHDL that contained apoA-I alone. In addition, the lecithin:cholesterol acyltransferase (LCAT) activation ability was reduced as the apoC-III content of the rHDL increased; however, the CE transfer ability was not decreased by the increase of apoC-III. Finally, rHDL containing apoC-III aggravated the production of MDA in cell culture media, which led to increased cellular uptake of LDL. Thus, the addition of apoC-III to rHDL induced changes in the structural and functional properties of the rHDL, especially in particle size and rearrangement and LCAT activation. These alterations may lead to beneficial functions of HDL, which is involved in anti-atherogenic properties in the circulation.  相似文献   

13.
Cell wall constituents of bacteria are potent endotoxins initiating inflammatory responses which may cause dramatic changes in lipid metabolism during the acute phase response. In this study, the sequential changes in lipoprotein composition and lipid transfer and binding proteins during clinical sepsis and during low-dose experimental endotoxemia were followed. In addition, the effect on (phospho)lipid homeostasis by administration of reconstituted HDL (rHDL) prior to low-dose LPS administration was investigated. Changes in (apo)lipoprotein concentrations typical of the acute phase response were observed during clinical sepsis and experimental endotoxemia with and without the rHDL intervention. During clinical sepsis negative correlations between the acute phase marker C-reactive protein (CRP) and lecithin:cholesterol acyltransferase (LCAT) and cholesterylester transfer protein (CETP) activities were seen, whereas positive correlations between plasma phospholipid transfer protein (PLTP) activity and acute phase markers such as CRP and LPS binding protein were observed. Plasma lipid changes upon rHDL/LPS infusion were comparable with the control group (low-dose LPS only). PLTP activity decreased upon LPS infusion and transiently increased during rHDL infusion, whereas LCAT activity slightly decreased upon both LPS infusion and LPS/rHDL infusion. However, long-lasting increases of circulating HDL cholesterol, apo A-I and a high initial processing of both phosphatidylcholine (PC) and lyso-PC, were indicative for extensive rHDL and LDL remodelling. Both sepsis and experimental endotoxemia lead to a disbalance of lipid homeostasis. Depending on the magnitude of the inflammatory stimulus, LCAT and PLTP activities reacted in divergent ways. rHDL infusion did not prevent the lipid alterations seen during the acute phase response. However profound changes in both HDL and LDL phospholipid composition occurred upon rHDL infusion. This may be explained, at least in part, by the fact that PLTP as a positive acute phase protein, can accelerate the alterations in (phospho)lipid homeostasis thereby playing a role in the attenuation of the acute phase response.  相似文献   

14.
Traditionally, lecithin:cholesterol acyltransferase (LCAT) role in the reverse cholesterol transport (RCT) has been considered "antiatherogenic" as the cholesterol esterification is the prerequisite for the formation of mature high density lipoprotein (HDL) particles and may create a gradient necessary for the flow of unesterified cholesterol (UC) from tissues to plasma. However, newer data suggest that a higher esterification rate is not necessarily protective. Here we review the available data on the role of LCAT in RCT and propose that the LCAT-mediated esterification of plasma cholesterol promotes RCT only in the presence of sufficient concentrations of HDL2 while this reaction may be atherogenic in the presence of high concentration of plasma low density lipoprotein (LDL) cholesterol Thus, the "protective" or potentially "atherogenic" role of LCAT depends on the quality of HDL and concentration of LDL. This hypothesis is consistent with the known high predictive value of LDL/HDL cholesterol ratio.  相似文献   

15.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

16.
Hine D  Mackness B  Mackness M 《IUBMB life》2012,64(2):157-161
The inhibition of low-density lipoprotein (LDL) oxidation by high-density lipoprotein (HDL) is a major antiatherogenic property of this lipoprotein. This activity is due, in part, to HDL associated proteins. However, whether these proteins interact in the antioxidant activity of HDL is unknown. LDL was incubated with apolipoprotein A1 (apo A1), lecithin:cholesterol acyltransferase (LCAT), and paraoxonase-1 (PON1) alone or in combination, in the presence or absence of HDL under oxidizing conditions. LDL lipid peroxide concentrations were determined. Apo A1, LCAT, and PON1 all inhibit LDL oxidation in the absence of HDL and enhance the ability of HDL to inhibit LDL oxidation. Their effect was additive rather than synergistic; the combination of these proteins significantly enhanced the length of time LDL was protected from oxidation. This seemed to be due to the ability of PON1 to prevent the oxidative inactivation of LCAT. Apo A1, LCAT, and PON1 can all contribute to the antioxidant activity of HDL in vitro. The combination of apo A1, LCAT, and PON1 prolongs the time that HDL can prevent LDL oxidation, due, at least in part, to the prevention LCAT inactivation.  相似文献   

17.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

18.
Six apolipoprotein A-I (apoA-I) variants containing the following amino acid changes: Pro3----Arg, Pro4----Arg, Lys107----0 (Lys deletion) Lys107----Met, Pro165----Arg, and Glu198----Lys, and the corresponding normal allele products, were isolated by preparative isoelectric focusing from heterozygous individuals. The apoA-I samples were reconstituted with palmitoyloleoyl phosphatidylcholine (POPC) or dipalmitoyl phosphatidylcholine (DPPC), and small amounts of cholesterol, into discoidal high density lipoprotein (HDL) complexes in order to examine their lipid binding and structural properties as well as their ability to activate lecithin:cholesterol acyltransferase (LCAT). Starting with initial molar ratios around 100:5:1 for phosphatidylcholine-cholesterol-apolipoprotein, all the normal and variant apoA-Is were completely incorporated into reconstituted HDL (rHDL). The rHDL particle sizes and their distributions were examined by nondenaturing gradient gel electrophoresis, before and after incubation with LDL, to assess the folding of apoA-I in the complexes. Intrinsic Trp fluorescence properties of the rHDL were measured, as a function of temperature and guanidine hydrochloride concentration, to detect conformational differences in the apoA-I variants. In addition, the LCAT reaction kinetics were measured with all the rHDL, and the apparent kinetic constants were compared. In terms of the structure of the rHDL particles, all the normal variant apoA-Is had similar sizes (94, 96 A) and size distributions, and indistinguishable fluorescence properties, with the exception of the Lys107----0 mutant. This variant formed slightly larger particles that were resistant to rearrangements in the presence of LDL, and had an altered apoA-I conformation in the vicinity of the Trp residues. The kinetic experiments with LCAT indicated that the apoA-I variants, Lys107----0 and Pro165----Arg, in rHDL particles had statistically different (30 to 90%) kinetic constants from the corresponding normal allele products; however, the variability in the kinetic constants among the normal apoA-I products was even greater (40 to 430%). Therefore, we conclude that the effects of these six mutations in apoA-I on the activation of LCAT are minor, and that the structural effects on rHDL, and possibly native HDL, are insignificant with the exception of the Lys107----0 mutation.  相似文献   

19.
A high performance gel filtration method for the rapid and reproducible separation of free and apolipoprotein D-associated lecithin: cholesterol acyltransferase (LCAT) originating from human plasma has been developed. Starting from step 3 of a previously invented covalent chromatography procedure, free LCAT was obtained as a well separated fraction in a yield of 55% of that injected into the column. The free LCAT had a specific activity of over 34,000 units/mg and did not contain apolipoprotein D or any other contaminant in the injected sample. Further 28% of LCAT with fully retained activity was recovered in a second fraction, demonstrating a 66,000 u LCAT associated with all apolipoprotein D occurring as a mean 33,000 u and a minor 66,000 u species and with at least two unidentified proteins with apparent molecular masses of 76,000 u and 43,000 u, respectively. Both free and apolipoprotein D-associated LCAT accepted the free cholesterol of heat-inactivated plasma selectively depleted of VLDL and LDL (alpha-LCAT activity) and of HDL (beta-LCAT activity) as substrate.  相似文献   

20.
The metabolism of cholesterol derived from [3H]cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large alpha-migrating HDL (HDL2) and was then transferred to small alpha-HDL (HDL3) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating in HDL2. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL2 as a relatively unreactive sink for LCAT-derived cholesteryl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号