首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological activity of the enkephalin cyclic analogues with a disulphide bridge between second and fifth positions, and the dependence of the activity on the cycle size, disulfide bridge localization and configuration of the amino acid residues have been studied. The analogues were synthesized by chemical approach with the use of pentafluorophenyl esters. The cyclization was carried out at the C-terminal tetrapeptide stage by iodine in methanol after removing benzyl protecting groups from thiol groups of cysteine and homocysteine by sodium in liquid ammonia. The blocking activity in vitro (GPI and MVD tests) to the mu- and delta-receptors depends on cycle size, localization of disulphide bridge in the cycle, and amino acid configuration at second and fifth positions. Analogues with D-amino acids proved to be most active in vivo (analgesia, cataleptic activity, effect on frequency of heart contractions and body temperature). Conformational characteristics of enkephalin analogues were investigated by means of CD spectroscopy.  相似文献   

2.
Angiotensin II (AII) is the active octapeptide product of the renin enzymatic cascade, which is responsible for sustaining blood pressure. In an attempt to establish the AII-receptor-bound conformation of this octapeptide, we designed conformationally constrained analogues by scanning the entire AII sequence with an i-(i+2) and i-(i+3) lactam bridge consisting of an Asp-(Xaa)(n)-Lys scaffold. Most analogues presented low agonistic activity when compared to AII in the different bioassays tested. The exceptions are cyclo(0-1a) [Asp(0), endo-(Lys(1a))]-AII (1) and [Asp(0), endo-(Lys(1a))]-AII (2), both of which showed activity similar to AII. Based on peptide 1 and the analogue cyclo(3-5)[Sar(1), Asp(3), Lys(5)]-AII characterized by Matsoukas et al., we analyzed the agonistic and antagonistic activities, respectively, through a new monocyclic peptide series synthesized by using the following combinations of residues as bridgehead elements for the lactam bond formation: D- or L-Asp combined with D- or L-Lys or L-Glu combined with L-Orn. Six analogues showed an approximately 20% increase in biological activity when compared with peptide (1) and were equipotent to AII. In contrast, six analogues presented antagonistic activity. These results suggest that the position of the lactam bridge is more important than the bridge length or chirality for recognition of and binding to the angiotensin II AT1-receptor.  相似文献   

3.
To investigate the role of distance between two opioid peptide pharmacophores on in vitro and in vivo activities, three new bivalent opioid analogues have been synthesized in which the dipeptide Tyr-D-Phe was connected with diamine moieties ("bridges"). The analogue with a hydrazine bridge has high receptor affinity to mu, kappa, and delta receptor types, as well as potent and long acting antinociceptive activity after intraperitoneal administration.  相似文献   

4.
A number of 2-(methylthio)ethanesulfonate (methyl-coenzyme M) analogues were synthesized and investigated as substrates for methyl-coenzyme M reductase, an enzyme system found in extracts of Methanobacterterium thermoautotrophicum. Replacement of the methyl moiety by an ethyl group yielded an analogue which served as a precursor for ethane formation. Propyl-coenzyme M, however, was not converted to propane. Analogues which contained additional methylene carbons such as 3-(methylthio)propanesulfonate or 4-(methylthio)butanesulfonate or analogues modified at the sulfide or sulfonate position, N-methyltaurine and 2-(methylthio)ethanol, were inactive. These analogues, in addition to a number of commercially available compounds, also were tested for their ability to inhibit the reduction of methyl-coenzyme M to methane. Bromoethanesulfonate and chloroethanesulfonate proved to be potent inhibitors of the reductase, resulting in 50% inhibition at 7.9 X 10(6) M and 7.5 X 10(5) M. Analogues to coenzyme M which contained modifications to other regions were evaluated also and found to be weak inhibitors of methane biosynthesis.  相似文献   

5.
Fourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor’s side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by l-pencillamine (Pen), homo-l-cysteine (Hcy), N-sulfanylethylglycine (Nhcy) or combination of the three with Cys. As in the substrate specificity the P1 position of the synthesized analogues Lys, Nlys [N-(4-aminobutyl)glycine], Phe or Nphe (N-benzylglycine) were present, and they were checked for trypsin and chymotrypsin inhibitory activity. The results clearly indicated that Pen and Nhcy were not acceptable at the position 3, yielding inactive analogues, whereas another residue (Cys11) could be substituted without any significant impact on the affinity towards proteinase. On the other hand, elongation of the Cys3 side chain by introduction of Hcy did not affect inhibitory activity, and an analogue with the Hcy–Hcy disulfide bridge was more than twice as effective as the reference compound ([Phe5] SFTI-1) in inhibition of bovine α-chymotrypsin.  相似文献   

6.
The conformational and immunological properties of different analogues corresponding to the 600-612 disulfide loop of the human immunodeficiency virus (HIV) gp41 glycoprotein envelope were studied. Fourteen analogues were designed and synthesised; namely, a series of seven analogues in which the disulfide bond was replaced by a lactam bridge and a series of seven analogues in which one residue of each analogue at a time, was replaced by its corresponding homologised alpha-amino acid (beta(3)-amino acid). In the case of the lactam analogues, the influence of the two possible CO-NH and NH-CO orientations of the lactam bridge as well as the size of the lactam ring was explored. The analogues were tested in ELISA with monoclonal antibodies raised against the 600-612 cyclic parent peptide as well as with sera from HIV-1 infected patients. A structural analysis of the parent and analogue peptides was carried out in dimethyl sulfoxide (DMSO-d(6)) using two-dimensional NMR techniques and molecular dynamics simulations. Comparison of the own conformation of the cyclic analogues with their either strong or weak reactivity with the antibodies reveals structural features that may be correlated with the antibody reactivity. Thus, a close structural similarity, particularly a characteristic orientation of the side-chains of residues Lys606, Leu607 and Ile608 in the loop, was found in certain beta(3)-analogues that were better recognised than the parent peptide by anti-peptide mouse monoclonal antibodies and patients' antibodies.  相似文献   

7.
A series of conformationally constrained cyclic analogues of the peptide hormone bradykinin (BK, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) was synthesized to check different turned structures proposed for the bioactive conformation of BK agonists and antagonists. Cycles differing in the size and direction of the lactam bridge were performed at the C- and N-terminal sequences of the molecule. Glutamic acid and lysine were introduced into the native BK sequence at different positions for cyclization through their side chains. Backbone cyclic analogues were synthesized by incorporation of N-carboxy alkylated and N-amino alkylated amino acids into the peptide chain. Although the coupling of Fmoc-glycine to the N-alkylated phenylalanine derivatives was effected with DIC/HOAt in SPPS, the dipeptide building units with more bulky amino acids were pre-built in solution. For backbone cyclization at the C-terminus an alternative building unit with an acylated reduced peptide bond was preformed in solution. Both types of building units were handled in the SPPS in the same manner as amino acids. The agonistic and antagonistic activities of the cyclic BK analogues were determined in rat uterus (RUT) and guinea-pig ileum (GPI) assays. Additionally, the potentiation of the BK-induced effects was examined. Among the series of cyclic BK agonists only compound 3 with backbone cyclization between positions 2 and 5 shows a significant agonistic activity on RUT. To study the influence of intramolecular ring closure we used an antagonistic analogue with weak activity, [D-Phe7]-BK. Side chain as well as backbone cyclization in the N-terminus of [D-Phe7]-BK resulted in analogues with moderate antagonistic activity on RUT. Also, compound 18 in which a lactam bridge between positions 6 and 9 was achieved via an acylated reduced peptide bond has moderate antagonistic activity on RUT. These results support the hypothesis of turn structures in both parts of the molecule as a requirement for BK antagonism. Certain active and inactive agonists and antagonists are able to potentiate the bradykinin-induced contraction of guinea-pig ileum.  相似文献   

8.
A structure-based design approach has been used to optimize a lead HIV-1 entry inhibitor targeted to the envelope glycoprotein gp41. The docking study on this lead compound revealed important structural requirements that need to be preserved as well as structural non-requirements that could be eliminated to substantially reduce the molecular size of the lead compound. Based on the results from docking study, a limited number of analogues were designed and synthesized. This approach yielded a new analogue (compound 4) that retained the anti-HIV-1 activity with reduced molecular size approaching towards more drug-like character.  相似文献   

9.
Human urotensin II (hU-II; H-Glu-Thr-Pro-Asp-cyclo[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) is a disulfide bridged undecapeptide recently identified as the ligand of an orphan G protein-coupled receptor. hU-II has been described as the most potent vasoconstrictor compound identified to date. With the aim of replacing the disulfide bridge by a chemically more stable moiety, we have synthesized and tested a series of lactam analogues of hU-II minimum active fragment, that is hU-II(4-11). The contractile activity of the synthetic analogues on the rat isolated thoracic aorta was found to be dependent upon the dimension of the lactam bridge. The most active peptide, H-Asp-cyclo[Orn-Phe-Trp-Lys-Tyr-Asp]-Val-OH (3), is approximately 2 logs less potent than hU-II (pD(2)=6.3 vs 8.4). A conformational analysis in solution of the active peptide 3, one of the inactive analogues, and hU-II was performed, using NMR and molecular modelling techniques. A superposition of the calculated structures of hU-II and 3 clearly shows that three out of four key residues (i.e., Phe(6), Lys(8) and Tyr(9)) maintain the same side- chain orientation, while the fourth one, Trp(7), cannot be superimposed. This observation could explain the reduced biological activity of the synthetic analogue.  相似文献   

10.
A series of linear and monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds, modified by N-(4-aminobutyl)glycine (Nlys) and N-benzylglycine (Nphe), were obtained by the solid-phase method. Some of these peptomers displayed trypsin or chymotrypsin inhibitory activity. In contradiction to the literature data, in most analogues peptide bonds formed by these peptoid monomers were at least partially hydrolyzed by the experimental enzymes at two different pH (3.5 and 8.3). Nevertheless, the replacement of Phe present in the P(1) substrate specificity of linear inactive SFTI-1 analogue with Nphe, yielded a potent chymotrypsin inhibitor. The introduction of one cyclic element (a disulfide bridge or head-to-tail cyclization) to the analogues synthesized significantly increased their proteinase resistance.  相似文献   

11.
The two novel diastereoisomeric glutathione analogues 1 and 2 have been designed and synthesized by replacing the native gamma-glutamylic moiety with the conformational rigid skeleton of cis- or trans-4-carboxy-L-proline residue. Both analogues have been obtained by following the solution phase peptide chemistry methodologies and final reduction of the corresponding disulfide forms 13 and 14. The two analogues 1 and 2 have been tested towards gamma-glutamyltranspeptidase (gamma-GT) and human glutathione S-transferase (hGST P1-1). Both analogues 1 and 2 are completely resistant to enzymatic degradation by gamma-GT. The S-transferase utilizes the analogue 2 as a good substrate while is unable to bind the analogue 1.  相似文献   

12.
Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val, melanin concentrating hormone (MCH), is a cyclic hormone possessing both MCH-like (melanin granule aggregating effect) and melanocyte stimulating hormone (MSH)-like (melanin granule dispersing effect) activities. Nine ring-contracted analogues were synthesized and characterized for their melanotropic activity on the fish (Synbranchus marmoratus) and frog (Rana pipiens) bioassays. In most cases, these analogues were totally devoid of MCH-like agonist activity, demonstrating the essential role of the disulfide bridge between residues 5 and 14 of the hormone. [Ala5, Cys10]MCH, for example, was totally devoid of MCH-like activity. This analogue, like alpha-MSH, however, antagonized the melanosome aggregating actions of MCH on fish melanocytes. The antagonistic activity of the analogue, like that of alpha-MSH, was Ca2+-dependent. Evidence suggested that this antagonism of MCH activity was related to the intrinsic MSH-like activity of the analogue. These results suggest that MCH and alpha-MSH may be structurally and, therefore, evolutionarily related.  相似文献   

13.
Six 2,4-diaminopyrido[2,3-d]pyrimidines with a 6-methylthio bridge to an aryl group were synthesized and biologically evaluated as inhibitors of Pneumocystis carinii (pc) and Toxoplasma gondii (tg) dihydrofolate reductase (DHFR). The syntheses of analogues 3-8 were achieved by nucleophilic displacement of 2,4-diamino-6-bromomethylpyrido[2,3-d]pyrimidine 14 with various arylthiols. The alpha-naphthyl analogue 4 showed the highest selectivity ratios of 3.6 and 8.7 against pcDHFR and tgDHFR, respectively, versus rat liver (rl) DHFR. The beta-naphthyl analogue 5 exhibited the highest potency within the series with an IC(50) value against pcDHFR and tgDHFR of 0.17 and 0.09 microM, respectively. Analogue 4 was evaluated for in vitro antimycobacterium activity and was shown to inhibit the growth of Mycobacterium tuberculosis H(37)Rv cells by 58% at a concentration of 6.25 microg/mL.  相似文献   

14.
Omega-Conotoxin GVIA (GVIA), an N-type calcium channel blocker from the cone shell Conus geographus, is a 27 residue polypeptide cross-linked by three disulfide bonds. Here, we report the synthesis, structural analysis by (1)H NMR and bioassay of analogues of GVIA with disulfide bridge deletions and N- and C-terminal truncations. Two analogues that retain the crucial Lys-2 and Tyr-13 residues in loops constrained by two native disulfide bridges were synthesised using orthogonal protection of cysteine residues. In the first analogue, the Cys-15-Cys-26 disulfide bridge was deleted (by replacing the appropriate Cys residues with Ser), while in the second, this disulfide bridge and the eight C-terminal residues were deleted. No activity was detected for either analogue in a rat vas deferens assay, which measures N-type calcium channel activity in sympathetic nerve, and NMR studies showed that this was due to a gross loss of secondary and tertiary structure. Five inactive analogues that were synthesised without orthogonal protection of Cys residues as part of a previous study (Flinn et al. (1995) J. Pept. Sci. 1, 379-384) were also investigated. Three had single disulfide deletions (via Ser substitutions) and two had N- or C-terminal deletions in addition to the disulfide deletion. Peptide mapping and NMR analyses demonstrated that at least four of these analogues had non-native disulfide pairings, which presumably accounts for their lack of activity. The NMR studies also showed that all five analogues had substantially altered tertiary structures, although the backbone chemical shifts and nuclear Overhauser enhancements (NOEs) implied that native-like turn structures persisted in some of these analogues despite the non-native disulfide pairings. This work demonstrates the importance of the disulfides in omega-conotoxin folding and shows that the Cys-15-Cys-26 disulfide is essential for activity in GVIA. The NMR analyses also emphasise that backbone chemical shifts and short- and medium-range NOEs are dictated largely by local secondary structure elements and are not necessarily reliable monitors of the tertiary fold.  相似文献   

15.
Iodophenyl and anthryl retinal analogues have been synthesized. Thetrans-isomers have been isolated and purified by high pressure liquid chromatography. The purified isomers have been further characterized by nuclear magnetic resonance and ultraviolet-visible spectroscopy. Incubation of these retinal analogues with apoprotein (bacterioopsin), isolated from the purple membrane ofHalobacterium halobium gave new bacteriorhodopsin analogues. These analogues have been investigated for their absorption properties and stability. The iodophenyl analogue has been found to bind to bacterioopsin rapidly. The pigment obtained from this analogue showed a dramatically altered opsin shift of 1343 cm-1. The anthryl analogue based bacteriorhodopsin, however, showed an opsin shift of 3849 cm-1. It has been found that bacteriorhodopsin is quite unrestrictive in the ionone ring site. The apoprotein seems to prefer chromophores that have the ring portion co-planar with the polyene side chain. The purple membrane has also been modified by treatment with fluorescamine, a surface active reagent specific for amino groups. Reaction under controlled stoichiometric conditions resulted in the formation of a modified pigment. The new pigment showed a band at 390 nm—indicative of fluorescamine reaction with amino group (s) of apoprotein-besides retaining its original absorption band at 560 nm. Analysis of the fluorescamine modified bacteriorhodopsin resulted in the identification of lysine 129 as the modified amino acid residue. Fluorescamine-modified-bacteriorhodopsin suspension did not release protons under photolytic conditions. However, proteoliposomes of fluorescamine-modified-bacteriorhodopsin were found to show proton uptake, though at a reduced rate. Presented at the 3rd National Symposium on Bioorganic Chemistry, 1987, Hyderabad.  相似文献   

16.
The smallest known naturally occurring trypsin inhibitor SFTI-1 (14 amino acid residues head-to-tail cyclic peptide containing one disulfide bridge) and its two analogues with one cycle each were synthesized by the solid phase method. Their trypsin inhibitory activity was determined as association equilibrium constants (K(a)). Additionally, hydrolysis rates with bovine beta-trypsin were measured. Among all three peptides, the wild SFTI-1 and the analogue with the disulfide bridge only had, within the experimental error, the same activity (the K(a) values 1.1 x 10(10) and 9.9 x 10(9) M(-1), respectively). Both peptides displayed unchanged inhibitory activity up to 6 h. The trypsin inhibitory activity of the analogue with the head-to-tail cycle only was 2.4-fold lower. It was also remarkably faster hydrolyzed (k = 1.1 x 10(-4) mol(peptide) x mol(enzyme)(-1) x s(-1)) upon the incubation with the enzyme than the other two peptides. This indicates that the head-to-tail cyclization is significantly less important than the disulfide bridge for maintaining trypsin inhibitory activity.  相似文献   

17.
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder resulting from reduced expression of the protein frataxin (FXN). Although its function is not fully understood, frataxin appears to help assemble iron sulfur clusters; these are critical for the function of many proteins, including those needed for mitochondrial energy production. Finding ways to increase FXN levels has been a major therapeutic strategy for this disease. Previously, we described a novel series of methylene violet analogues and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Presently, a series of methylene blue analogues has been synthesized and characterized for their in vitro biochemical and biological properties in cultured Friedreich’s ataxia lymphocytes. Favorable methylene blue analogues were shown to increase frataxin levels and mitochondrial biogenesis, and to improve aconitase activity. The analogues were found to be good ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I and from glutathione depletion. The analogues also preserved mitochondrial membrane potential and augmented ATP production. Our results suggest that analogue 5, emerging from the initial structure of the parent compound methylene blue (MB), represents a promising lead structure and lacks the cytotoxicity associated with the parent compound MB.  相似文献   

18.
The C-terminal region of the A chain of insulin has been shown to play a significant role in the expression of the biological activity of the hormone. To further delineate the contribution of this segment, we have synthesized [21-desasparagine,20-cysteinamide-A]insulin and [21-desasparagine,20-cysteine isopropylamide-A]insulin, in which the C-terminal amino acid residue of the A chain of insulin, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an amide and an isopropylamide, respectively. Both insulin analogues display biological activity, 14-15% for the unsubstituted amide analogue and 20-22% for the isopropylamide analogue, both relative to bovine insulin. In contrast, a [21-desasparagine-A]insulin analogue has been reported to display less than 4% of the activity of the natural hormone [Carpenter, F. (1966) Am. J. Med. 40, 750-758]. The implications of these findings are discussed, and we conclude that the A20-A21 amide bond plays a significant role in the expression of the biological activity of insulin.  相似文献   

19.
Previous studies have shown that (E)-8-(3-chlorostyryl)caffeine (CSC) is a specific reversible inhibitor of human monoamine oxidase B (MAO-B) and does not bind to human MAO-A. Since the small molecule isatin is a natural reversible inhibitor of both MAO-B and MAO-A, (E)-5-styrylisatin and (E)-6-styrylisatin analogues were synthesized in an attempt to identify inhibitors with enhanced potencies and specificities for MAO-B. The (E)-styrylisatin analogues were found to exhibit higher binding affinities than isatin with the MAO preparations tested. The (E)-5-styrylisatin analogues bound more tightly than the (E)-6 analogue although the latter exhibits the highest MAO-B selectivity. Molecular docking studies with MAO-B indicate that the increased binding affinity exhibited by the (E)-styrylisatin analogues, in comparison to isatin, is best explained by the ability of the styrylisatins to bridge both the entrance cavity and the substrate cavity of the enzyme. Experimental support for this model is shown by the weaker binding of the analogues to the Ile199Ala mutant of human MAO-B. The lower selectivity of the (E)-styrylisatin analogues between MAO-A and MAO-B, in contrast to CSC, is best explained by the differing relative geometries of the aromatic rings for these two classes of inhibitors.  相似文献   

20.
Phosphonomethyl analogues of glycyl phosphate and valyl phosphate, i.e. NH2-CHR-CO-CH2-PO(OH)2, were synthesized and esterified with adenosine to give analogues of aminoacyl adenylates. The interaction of these adenylate analogues with valyl-tRNA synthetase from Escherichia coli was studied by fluorescence titration. The analogue of valyl phosphate has an affinity for the enzyme comparable with that of valine, but that of valyl adenylate is bound much less tightly than either valyl adenylate or corresponding derivative of valinol. The affinity of the analogue of glycyl adenylate was too low to be measured. We conclude that this enzyme interacts specifically with both the side chain and the anhydride linkage of the adenylate intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号