首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear envelope in muscular dystrophy and cardiovascular diseases   总被引:1,自引:0,他引:1  
Considerable interest has been focused on the nuclear envelope in recent years following the realization that several human diseases are linked to defects in genes encoding nuclear envelope specific proteins, most notably A-type lamins and emerin. These disorders, described as laminopathies or nuclear envelopathies, include both X-linked and autosomal dominant forms of Emery–Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction system defects, limb girdle muscular dystrophy 1B with atrioventricular conduction disturbances, and Dunnigan-type familial partial lipodystrophy. Certain of these diseases are associated with nuclear structural abnormalities that can be seen in a variety of cells and tissues. These observations clearly demonstrate that A-type lamins in particular play a central role, not only in the maintenance of nuclear envelope integrity but also in the large-scale organization of nuclear architecture. What is not obvious, however, is why defects in nuclear envelope proteins that are found in most adult cell types should give rise to pathologies associated predominantly with skeletal and cardiac muscle and adipocytes. The recognition of these various disorders now raises the novel possibility that the nuclear envelope may have functions that go beyond housekeeping and which impact upon cell-type specific nuclear processes.  相似文献   

2.
3.
Lamin proteins are the major constituents of the nuclear lamina, a proteinaceous network that lines the inner nuclear membrane. Primarily, the nuclear lamina provides structural support for the nucleus and the nuclear envelope; however, lamins and their associated proteins are also involved in most of the nuclear processes, including DNA replication and repair, regulation of gene expression, and signaling. Mutations in human lamin A and associated proteins were found to cause a large number of diseases, termed ‘laminopathies.’ These diseases include muscular dystrophies, lipodystrophies, neuropathies, and premature aging syndromes. Despite the growing number of studies on lamins and their associated proteins, the molecular organization of lamins in health and disease is still elusive. Likewise, there is no comprehensive view how mutations in lamins result in a plethora of diseases, selectively affecting different tissues. Here, we discuss some of the structural aspects of lamins and the nuclear lamina organization, in light of recent results.  相似文献   

4.
5.
6.
The nuclear envelope is a complex structure consisting of nuclear membranes, nuclear pore complexes and lamina. Several integral membrane proteins specific to the nuclear pore membrane and the inner nuclear membrane are known. Pore membrane proteins are probably important for organization and assembly of the nuclear pore complex, while proteins of the inner nuclear membrane are likely to play major roles in the structure and dynamics of the nuclear lamina and chromatin. Biochemical studies are now identifying potential binding partners for some of these integral membrane proteins, and analysis of nuclear envelope assembly at the end of mitosis is providing important insights into their functions.  相似文献   

7.
In the past decade, the inner nuclear membrane has become a focus of research on inherited diseases. A heterogeneous group of genetic disorders known as laminopathies have been described that result from mutations in genes encoding nuclear lamins, intermediate filament proteins associated with the inner nuclear membrane. Mutations in genes encoding integral inner nuclear membrane proteins, many of which bind to nuclear lamins, also cause diseases that sometimes are very similar to those caused by lamin gene mutations. The pathogenic mechanisms that underlie these diseases, which often selectively affect different tissues or organ systems despite the near-ubiquitous expression of the proteins, are only beginning to be elucidated. The unfolding story of the laminopathies provides a remarkable example of how research in basic cell biology has impacted upon medicine and human health.  相似文献   

8.
The Ku autoantigen is a human nuclear, DNA-binding heterodimer of 70kDa and 86kDa proteins. It is the target of autoantibodies in several autoimmune diseases. We now report the expression of a cDNA encoding the 70kDa Ku protein. Large amounts of protein were obtained using a recombinant baculovirus vector, in contrast with earlier unsuccessful attempts using other expression systems. We demonstrate that the 70kDa Ku protein is targeted to the nucleus and is associated with the nuclear matrix when expressed in the absence of the 86kDa Ku component. No post-translational modifications were observed. The 70kDa protein binds double and single-stranded DNA with very high affinity. Our results suggest that the baculovirus expression system may be of widespread use in the production and characterization of human autoantigens.  相似文献   

9.
Considering nuclear compartmentalization in the light of nuclear dynamics   总被引:8,自引:0,他引:8  
Chubb JR  Bickmore WA 《Cell》2003,112(4):403-406
Many proteins are concentrated in compartments within the nucleus. Chromatin is also compartmentalized at different nuclear sites. However, nuclear proteins have now been shown to be highly mobile. This review considers the formation and function of nuclear compartments in a situation in which proteins are rapidly moving through the nuclear volume.  相似文献   

10.
The pathogenesis of autoimmune diseases is only partially understood. In particular, the question remains why many nuclear proteins have been identified as autoantigens. One possible mechanism for an autoimmune response to nuclear proteins involves their exposure to the immune system. In this report we discuss currently available data on the exposure of nuclear proteins by expression at the cell-surface. Although the pathways of surface expression remain unclear, the presence of nuclear proteins at the cell-surface might reflect a pathological reaction leading to an exposure of epitopes, e.g. to self-reactive B-cells. It is suggested that cell-surface expression of intracellular proteins can contribute to the generation of autoimmune diseases.  相似文献   

11.
Wnt signaling in disease and in development   总被引:30,自引:0,他引:30  
Nusse R 《Cell research》2005,15(1):28-32
The highly conserved Wnt secreted proteins are critical mediators of cell-to-cell signaling during development of animals. Recent biochemical and genetic analyses have led to significant insight into understanding how Wnt signals work. The catalogue of Wnt signaling components has exploded. We now realize that multiple extracellular, cytoplasmic, and nuclear components modulate Wnt signaling. Moreover, receptor-ligand specificity and multiple feedback loops determine Wnt signaling outputs. It is also clear that Wnt signals are required for adult tissue maintenance. Perturbations in Wnt signaling cause human degenerative diseases as well as cancer.  相似文献   

12.
We tested whether proteins implicated in Huntington's and other polyglutamine (polyQ) expansion diseases can cause axonal transport defects. Reduction of Drosophila huntingtin and expression of proteins containing pathogenic polyQ repeats disrupt axonal transport. Pathogenic polyQ proteins accumulate in axonal and nuclear inclusions, titrate soluble motor proteins, and cause neuronal apoptosis and organismal death. Expression of a cytoplasmic polyQ repeat protein causes adult retinal degeneration, axonal blockages in larval neurons, and larval lethality, but not neuronal apoptosis or nuclear inclusions. A nuclear polyQ repeat protein induces neuronal apoptosis and larval lethality but no axonal blockages. We suggest that pathogenic polyQ proteins cause neuronal dysfunction and organismal death by two non-mutually exclusive mechanisms. One mechanism requires nuclear accumulation and induces apoptosis; the other interferes with axonal transport. Thus, disruption of axonal transport by pathogenic polyQ proteins could contribute to early neuropathology in Huntington's and other polyQ expansion diseases.  相似文献   

13.
The nuclear lamina is located between the inner nuclear membrane and the peripheral chromatin. It is composed of both peripheral and integral membrane proteins, including lamins and lamina-associated proteins. Lamins can interact with one another, with lamina-associated proteins, with nuclear scaffold proteins, and with chromatin. Likewise, most of the lamina-associated proteins are likely to interact directly with chromatin. The nuclear lamina is required for proper cell cycle regulation, chromatin organization, DNA replication, cell differentiation, and apoptosis. Mutations in proteins of the nuclear lamina can disrupt these activities and cause genetic diseases. The structure and assembly of the nuclear lamina proteins and their roles in chromatin organization and cell cycle regulation were recently reviewed. In this review, we discuss the roles of the nuclear lamina in DNA replication and apoptosis and analyze how mutations in nuclear lamina proteins might cause genetic diseases.  相似文献   

14.
The nuclear envelope, muscular dystrophy and gene expression   总被引:16,自引:0,他引:16  
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease.  相似文献   

15.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

16.
Nucleo-cytoplasmic transport of proteins is mediated by nuclear export signals, identified in various proteins executing heterologous biological functions. However, the molecular mechanism underlying the orchestration of export is only poorly understood. Using microinjection of defined recombinant export substrates, we now demonstrate that leucine-rich nuclear export signals varied dramatically in determining the kinetics of export in vivo . Thus, nuclear export signals could be kinetically classified which correlated with their affinities for CRM1-containing export complexes in vitro . Strikingly, cotransfection experiments revealed that proteins containing a fast nuclear export signal inhibited export and the biological activity of proteins harboring a slower nuclear export signal in vivo . The affinity for export complexes seems therefore predominantly controlled by the nuclear export signal itself, even in the context of the complete protein in vivo . Overexpression of FG-rich repeats of nucleoporins affected a medium nuclear export signal containing protein to the same extent as a fast nuclear export signal containing protein, indicating that nucleoporins appear not to contribute significantly to nuclear export signal-specific export regulation. Our results imply a novel mode for controlling the biological activity of shuttle proteins already by the composition of the nuclear export signal itself.  相似文献   

17.
The lamins are nuclear intermediate filament-type proteins forming the nuclear lamina meshwork at the inner nuclear membrane as well as complexes in the nucleoplasm. The recent discoveries that mutated A-type lamins and lamin-binding nuclear membrane proteins can be linked to numerous rare human diseases (laminopathies) affecting a multitude of tissues has changed the cell biologist’s view of lamins as mere structural nuclear scaffold proteins. It is still unclear how mutations in these ubiquitously expressed proteins give rise to tissue-restricted pathological phenotypes. Potential disease models include mutation-caused defects in lamin structure and stability, the deregulation of gene expression, and impaired cell cycle control. This review brings together various previously proposed ideas and suggests a novel, more general, disease model based on an impairment of adult stem cell function and thus compromised tissue regeneration in laminopathic diseases.  相似文献   

18.
The nuclear envelope has traditionally been thought of as a barrier that separates the nucleoplasm from the cytoplasm in eukaryotic cells. Increasing evidence shows that the nuclear envelope also links the inside of the nucleus to the cytoskeleton. Here we discuss recent papers showing that this link occurs through complexes of lamins on the inner aspect of the inner nuclear membrane, transmembrane proteins of the inner nuclear membrane called SUNs and large nesprin isoforms localized specifically to the outer nuclear membrane. These discoveries have implications for nuclear positioning, nuclear migration and pathogenesis of inherited diseases that are caused by mutations in nuclear envelope proteins.  相似文献   

19.
After synthesis in the cytoplasm, nuclear proteins traverse the nuclear envelope as a result of the specific recognition of nuclear localization signals by import. Various approaches have now uncovered a range of proteins with at least some of the characteristics expected of import receptors. This article focuses on early steps in the nuclear import of proteins and surveys the recently identified candidate import receptors.  相似文献   

20.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号