首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid composition of the mycelium and sclerotia ofPhymatotrichum omnivorum was compared. The lipids of the mycelium contained 47.9 % polar lipids as compared to 21.4 % in the sclerotia. Sterols represented 10 % of the lipids in sclerotia as contrasted to 3.6 % of the mycelium. More monoglycerides (17.5 %) were detected in the sclerotia as compared to the mycelium (1.6 %). Fatty acid analysis indicated that linoleic acid was the predominant fatty acid in the total fatty acids fraction in both the mycelium and the sclerotia. Palmitic acid was the major free fatty acid in the mycelium, whereas myristic acid was the predominant free fatty acid in the sclerotia. In the fatty acids of the diglycerides of sclerotia, palmitic acid represented 71 % of that fraction, as compared to 6.6 % of the fatty acids of the diglycerides in the mycelium. The major fatty acid in the diglycerides of the mycelium was oleic acid.  相似文献   

2.
The carbohydrate and lipid components of mycelium and conidia ofFonsecaea pedrosoi (Brumpt) were analysed by paper, thin-layer and gas-chromatography, mass spectrometry and ultraviolet spectroscopy. Glucose, mannose, galactofuranose, rhamnose and glucosamine were polysaccharide components identified inF. pedrosoi. Significant changes in the carbohydrate pattern occurred during the conversion of mycelium into conidia. Rhamnose was predominant in conidia whereas galactose was prominent in mycelium. Palmitic, stearic, oleic, linoleic, and arachidonic acids were the fatty acids identified in the total lipid fraction. Palmitic and oleic acids were major fatty acids. Marked alterations in the fatty acid constituents were observed between the cell types ofF. pedrosoi. Arachidonic acid was detected only in conidia and linoleic acid was preferentially identified in mycelium. Differences in the sterol composition was also associated with morphogenesis inF. pedrosoi. Two main sterols, ergosterol and another less polar sterol, not fully characterized, were found in mycelium whereas in conidia only the latter sterol was present.  相似文献   

3.
The fatty acid composition of the total, neutral, sterol, free fatty acid, and polar-lipid fractions in the mycelium of Choanephora curcurbitarum was determined. The major fatty acids in all lipid fractions were palmitic, oleic, linoleic, and gamma-linolenic acid. Different lipid fractions did not show any particular preference for any individual fatty acid; however, the degree of unsaturation was different in different lipid fractions. Free fatty acid and polar lipid fractions contained a higher proportion of gamma-linolenic acid than did triglyceride and sterol fractions. Addition of glutamic acid to the malt-yeast extract and medium resulted in the biosynthesis of a number of long-chain fatty acids beyond the gamma-linolenic acid. These fatty acids, e.g., C22:1, C24:0, and C26:0, were never observed to be present in the fungus when grown on a malt-yeast extract medium without glutamic acid. Furthermore, thin-layer chromatographic analysis showed a larger and denser spot of diphosphatidyl glycerol from the mycelium grown on glutamic acid medium than from the control mycelium. The possible significance of this finding is discussed.  相似文献   

4.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

5.
The effects of oleic, linoleic, and gamma-linolenic acids on the production of ROS by unstimulated and PMA-stimulated neutrophils were investigated by using five techniques: luminol- and lucigenin-amplified chemiluminescence, cytochrome c, hydroethidine, and phenol red reduction. Using lucigenin-amplified chemiluminescence, an increase in extracellular superoxide levels was observed by the treatment of neutrophils with the fatty acids. There was also an increase in intracellular ROS levels under similar conditions as measured by the hydroethidine technique. An increment in the intra- and extracellular levels of H2O2 was also observed in neutrophils treated with oleic acid as measured by phenol red reduction assay. In the luminol technique, peroxidase activity is required in the reaction of luminol with ROS for light generation. Oleic, linoleic, and gamma-linolenic acids inhibited the myeloperoxidase activity in stimulated neutrophils. So, these fatty acids jeopardize the results of ROS content measured by this technique. Oleic, linoleic, and gamma-linolenic acids per se led to cytochrome c reduction and so this method also cannot be used to measure ROS production induced by fatty acids. Oleic, linoleic, and gamma-linolenic acids do stimulate ROS production by neutrophils; however, measurements using the luminol-amplified chemiluminescence and cytochrome c reduction techniques require further analysis.  相似文献   

6.
An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).  相似文献   

7.
1. Three groups of female rats (8-12 weeks old) were maintained respectively on a linoleic acid-rich diet, a linoleic acid-poor predominantly saturated-fatty acid diet and a normal diet. Changes in the fatty acid compositions of serum, brain, brain mitochondria-rich fraction and myelin were observed. 2. Of the serum fatty acids, linoleic acid showed the greatest change in the percentage of the total acids in response to diet; the change in the proportion of oleic acid was considerable. The percentages of arachidonic acid in serum fatty acids in the groups on the linoleic acid-rich and linoleic acid-poor diets were similar, but higher than those in the normal group. 3. Changes in the proportions of linoleic acid, arachidonic acid and docosahexaenoic acid occurred in brain fatty acids that to some extent paralleled those occurring in the serum. Changes in the proportions of most other acids in the serum fatty acids were not accompanied by corresponding changes in the brain fatty acids. 4. The percentage fatty acid compositions of a mitochondria-rich fraction and myelin are given, and changes in the relative proportions of linoleic acid, arachidonic acid and possibly some docosapolyenoic acids were demonstrated to occur as a result of diet. 5. The results are discussed in relation to the possible aetiology of multiple sclerosis.  相似文献   

8.
The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.  相似文献   

9.
Gottlieb, David (University of Illinois, Urbana), and James L. Van Etten. Changes in fungi with age. I. Chemical composition of Rhizoctonia solani and Sclerotium bataticola. J. Bacteriol. 91:161-168. 1966.-The chemical composition of the mycelium of Rhizoctonia solani and Sclerotium bataticola was determined in cells of various ages. The percentage, per unit of dry weight, of soluble amino nitrogen, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), ergosterol, and protein decreased with age in both fungi. Total lipids and fatty acids increased with age in S. bataticola but remained constant in R. solani. Total carbohydrate increased with age in R. solani and decreased in S. bataticola. Fewer changes with age were observed when the results were calculated in ratio to DNA. There was no change in the ratios of protein, RNA, and soluble amino nitrogen to DNA with age in either fungus, but the ergosterol-DNA ratio decreased. The total lipid-DNA ratio and the total fatty acid-DNA ratio increased with age in both fungi, whereas the total carbohydrate-DNA ratio increased in R. solani but remained constant in S. bataticola. Both fungi contained myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acids. In addition, R. solani contained pentadecanoic acid, and S. bataticola had myristoleic, linolenic, and arachidic acids. No marked change in the fatty acid pattern of S. bataticola was observed with age, whereas in R. solani the percentage of linoleic acid per total fatty acids decreased slightly when oleic acid increased.  相似文献   

10.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

11.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

12.
Macrophages are able to produce, export, and transfer fatty acids to lymphocytes in culture. The purpose of this study was to examine if labelled fatty acids could be transferred from macrophages to pancreatic islets in co-culture. We found that after 3 h of co-culture the transfer of fatty acids to pancreatic islets was: arachidonic > oleic > linoleic = palmitic. Substantial amounts of the transferred fatty acids were found in the phospholipid fraction; 87.6% for arachidonic, 59.9% for oleic, 53.1% for palmitic, and 36.9% for linoleic acids. The remaining radioactivity was distributed among the other lipid fractions analysed (namely polar lipids, cholesterol, fatty acids, triacylglycerol and cholesterol ester), varying with the fatty acid used. For linoleic acid, a significant proportion (63.1%) was almost equally distributed in these lipid fractions. Also, it was observed that transfer of fatty acids from macrophages to pancreatic islets is time-dependent up to 24 h, being constant and linear with time for palmitic acid and remaining constant after 12 h for oleic acid. These results lead us to postulate that in addition to the serum, circulating monocytes may also be a source of fatty acids to pancreatic islets, mainly arachidonic acid.  相似文献   

13.
The fatty-acid composition of follicular fluid from small and large developing follicles was analysed and the effects of saturated and unsaturated fatty acids on spontaneous breakdown of germinal vesicles were investigated. Fatty acids were bound to bovine serum albumin and cultured with oocytes at 100 mumol/l. Linoleic acid (18:2) was the only fatty acid tested that significantly inhibited breakdown of germinal vesicles (P less than 0.01). The effect was dose-dependent and was greatest at 50 mumol fatty acid/l (% breakdown of control, 81.1 +/- 6.8 vs. 50 mumol linoleic acid/l, 35.4 +/- 7.3; P less than 0.02). Linoleic acid was the major fatty acid, constituting about a third of the total fatty acid in the follicular fluid; followed by 18.9 +/- 1.0% and 16.9 +/- 1.3% oleic acid (18:1) in small and large follicles, respectively. Saturated fatty acids accounted for less than 30% of the total fatty acid composition. There was a marked absence of tetraenoic acids in small and large follicles. Proportions of linoleic acid were significantly lower in follicular fluid from large follicles (31.1 +/- 1.2% of total fatty acid) than from small follicles (34.8 +/- 0.7% of total fatty acid) (P less than 0.05) and there was a significant inverse correlation between follicle diameter and percentage of linoleic acid in the follicular fluid (r = -0.6966; P less than 0.05). There was no significant alteration in any other fatty acid during follicular development.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

15.
The purpose of this study was to investigate the mechanism of fatty acid-induced regulation of melanogenesis. An apparent regulatory effect on melanogenesis was observed when cultured B16F10 melanoma cells were incubated with fatty acids, i.e., linoleic acid (unsaturated, C18:2) decreased melanin synthesis while palmitic acid (saturated, C16:0) increased it. However, mRNA levels of the melanogenic enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), were not altered. Regarding protein levels of these enzymes, the amount of tyrosinase was decreased by linoleic acid and increased by palmitic acid, whereas the amounts of TRP1 and TRP2 did not change after incubation with fatty acids. Pulse-chase assay by [35S]methionine metabolic labeling revealed that neither linoleic acid nor palmitic acid altered the synthesis of tyrosinase. Further, it was shown that linoleic acid accelerated, while palmitic acid decelerated, the proteolytic degradation of tyrosinase. These results suggest that modification of proteolytic degradation of tyrosinase is involved in regulatory effects of fatty acids on melanogenesis in cultured melanoma cells.  相似文献   

16.
Five Lactobacillus strains of intestinal and food origins were grown in MRS broth or milk containing various concentrations of linoleic acid or conjugated linoleic acid (CLA). The fatty acids had bacteriostatic, bacteriocidal, or no effect depending on bacterial strain, fatty acid concentration, fatty acid type, and growth medium. Both fatty acids displayed dose-dependent inhibition. All strains were inhibited to a greater extent by the fatty acids in broth than in milk. The CLA isomer mixture was less inhibitory than linoleic acid. Lactobacillus reuteri ATCC 55739, a strain capable of isomerizing linoleic acid to CLA, was the most inhibited strain by the presence of linoleic acid in broth or milk. In contrast, a member of the same species, L. reuteri ATCC 23272, was the least inhibited strain by linoleic acid and CLA. All strains increased membrane linoleic acid or CLA levels when grown with exogenous fatty acid. Lactobacillus reuteri ATCC 55739 had substantial CLA in the membrane when the growth medium was supplemented with linoleic acid. No association between level of fatty acid incorporation into the membrane and inhibition by that fatty acid was observed.  相似文献   

17.
D Daret  P Blin  J Larrue 《Prostaglandins》1989,38(2):203-214
The metabolism of linoleic acid by washed human platelets was investigated. [1.14C] linoleic acid was converted to [1.14C] hydroxy octadecadienoic acids (HODEs) at about the same rate with which [1.14C] 12-HETE was produced from [1.14C] arachidonic acid. The total radioactivity in HODEs was distributed among two isomers: 13-HODE (85%) and 9-HODE (15%) as defined by CG-MS. The production of HODEs by intact washed platelets was inhibited by indomethacin (IC50:5 x 10(-7) M) which suggest that hydroxy fatty acids were produced by PGH-synthase. By contrast, the production of HODEs by platelet cytosolic fractions was not modified under indomethacin treatment but completely abolished by NDGA (10(-3) M) and inhibited by the platelet lipoxygenase inhibitors 15-HETE (2.10(-5) M) and baicalein (10(-5) M). Platelets thus contain two different active systems which may convert linoleic acid to hydroxy fatty acids. Since these compounds remained essentially associated with the platelets, their presence may significantly participate in the mechanisms of platelet activation.  相似文献   

18.
We investigated whether the amount of dietary linoleic acid (LA) (as corn oil) influences the incorporation of dietary eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in tissue phospholipids and the prostanoid biosynthesis. Rats were fed four different levels of corn oil (at a total dietary fat level of either 2.5%, 5%, 10% or 20%); at each corn oil level, two groups of rats were supplemented with either EPA and DHA (200 mg/day) during 6 weeks, and compared with a group receiving oleic acid. The phospholipid fatty acid composition of liver, kidney and aorta showed, as expected, that the incorporation of EPA was highly suppressed by increasing the content of dietary linoleic acid in the diets. On the other hand, DHA was almost unaffected by the amounts of (n - 6) fatty acids in the diets. These results indicate that EPA levels but not DHA levels in tissue phospholipids were influenced by the competing dietary (n - 6) fatty acids. The tissue arachidonate content was similar under the various dietary linoleic acid conditions, but feeding EPA or DHA lowers the AA content. Moreover, the amount of dietary linoleic acid did not significantly influence the prostaglandin E2 (PGE2) production in stimulated aortic rings. However, PGE2 synthesis was significantly decreased in the groups treated with either EPA or DHA. Thromboxane B2 levels in serum followed a similar pattern. It is suggested that an increase of dietary (n - 3) PUFAs is more efficient to reduce (n - 6) eicosanoid formation than a decrease of dietary (n - 6) fatty acids.  相似文献   

19.
Aspergillus niger was grown for 6 days, and the harvested biomass was homogenized; the resultant supernatant, considered as the crude enzymatic extract, was enriched by ammonium sulfate precipitation. The extract was assayed for its lipoxygenase (LOX) activity using a wide range of polyunsaturated fatty acids (PUFAs), including linoleic, linolenic and arachidonic acids, as substrates. Two pH maxima were determined at 5.0, 10.5. The Km and Vmax values indicated that the microbial LOX displayed preferential substrate specificity towards linolenic acid at low pH. The microbial LOX demonstrated preferential substrate specificity towards free fatty acids over the acyl esters of linoleic acid. It was shown that the LOX activity of A. niger produced all monohydroperoxy regioisomers of the PUFAs, and there was a predominance of conjugated diene hydroperoxides. Significant production of the unconjugated 10-hydroperoxides of both linoleic and linolenic acids was obtained by the LOX activity. The amounts of 10-hydroperoxides ranged from 15 to 21% of total produced isomers, for linolenic and linoleic acids, respectively. The greatest proportion of the 10-regioisomer was attributed to the maximum activity at pH 5.0. Four major hydroperoxy-eicosatetraenoic acid (HPETE) regioisomers were isolated from the bioconversion of arachidonic acid, including the 8-, 9-, 12- and 15-HPETE, which accounted for approximately 97% of total isomers.  相似文献   

20.
The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans. Twenty-six men and 30 women, all normolipemic and apparently healthy, completed the trial. Three experimental diets were supplied to every subject for 3 weeks each, in random order (multiple cross-over). The Linoleate-diet provided 12.0% of total energy intake as linoleic acid, 2.8% as stearic acid, and 0.1% as trans fatty acids. The Stearate-diet supplied 3.9 energy % as linoleic acid, 11.8% stearic acid, and 0.3% trans fatty acids. The Trans-diet provided 3.8 energy % as linoleic acid, 3.0% stearic acid, and 7.7% as monounsaturated trans fatty acids, largely elaidic acid (trans-C18:1(n-9)). Other nutrients were constant. Fasting blood was sampled at the end of each dietary period. Mean (+/- SD) serum LDL cholesterol was 109 +/- 24 mg/dl (2.83 +/- 0.63 mmol/l) on the Linoleate-diet. It rose to 116 +/- 27 mg/dl (3.00 +/- 0.71 mmol/l) on the Stearate-diet (change, 7 mg/dl or 0.17 mmol/l, P = 0.0008) and to 119 +/- 25 mg/dl (3.07 +/- 0.65 mmol/l) on the Trans-diet (change, 9 mg/dl or 0.24 mmol/l, P less than 0.0001). High density lipoprotein (HDL) cholesterol decreased by 2 mg/dl (0.06 mmol/l, P less than 0.0001) on the Stearate-diet and by 4 mg/dl (0.10 mmol/l, P less than 0.0001) on the Trans-diet, both relative to linoleic acid. Our findings show that 7.7% of energy (mean, 24 g/day) of trans fatty acids in the diet significantly lowered HDL cholesterol and raised LDL cholesterol relative to linoleic acid. Combination with earlier results (Mensink, R. P., and M. B. Katan. 1990. N. Engl. J. Med. 323: 439-445) suggests a linear dose-response relation. Replacement of linoleic acid by stearic acid also caused somewhat lower HDL cholesterol and higher LDL cholesterol levels. Hydrogenation of linoleic acid to either stearic or trans fatty acids produces fatty acids that may increase LDL and decrease HDL cholesterol relative to linoleic acid itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号