首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The perilipins are the most abundant proteins coating the surfaces of lipid droplets in adipocytes and are found at lower levels surrounding lipid droplets in steroidogenic cells. Perilipins drive triacylglycerol storage in adipocytes by regulating the rate of basal lipolysis and are also required to maximize hormonally stimulated lipolysis. To map the domains that target and anchor perilipin A to lipid droplets, we stably expressed fragments of perilipin A in 3T3-L1 fibroblasts. Immunofluorescence microscopy and immunoblotting of proteins from isolated lipid droplets revealed that neither the amino nor the carboxyl terminus is required to target perilipin A to lipid droplets; however, there are multiple, partially redundant targeting signals within a central domain including 25% of the primary amino acid sequence. A peptide composed of the central domain of perilipin A directed a fused green fluorescent protein to the surfaces of lipid droplets. Full-length perilipin A associates with lipid droplets via hydrophobic interactions, as shown by the persistence of perilipins on lipid droplets after centrifugation through an alkaline carbonate solution. Results of the mutagenesis studies indicate that the sequences responsible for anchoring perilipin A to lipid droplets are most likely domains of moderately hydrophobic amino acids located within the central 25% of the protein. Thus, we conclude that the central 25% of the perilipin A sequence contains all of the amino acids necessary to target and anchor the protein to lipid droplets.  相似文献   

2.
Perilipin A is the most abundant protein associated with the lipid droplets of adipocytes and functions to control both basal and stimulated lipolysis. Under basal or fed conditions, perilipin A shields stored triacylglycerols from cytosolic lipases, thus promoting triacylglycerol storage. When catecholamines bind to cell surface receptors to initiate signals that activate cAMP-dependent protein kinase (PKA), phosphorylated perilipin A facilitates maximal lipolysis. Mutagenesis studies have revealed that central sequences of moderately hydrophobic amino acids are required to target nascent perilipin A to lipid droplets and provide an anchor into the hydrophobic environment of lipid droplets. Sequences of amino acids in the unique carboxyl terminus of perilipin A and those in amino terminal sequences flanking the first hydrophobic stretch are required for the barrier function of perilipin A in promoting triacylglycerol storage. Site-directed mutagenesis studies of serine residues within six PKA consensus sites of perilipin A reveal functions for phosphorylation of at least three of the sites. Phosphorylation of one or more of the serines within three amino terminal PKA sites is required to facilitate hormone-sensitive lipase access to lipid substrates. Phosphorylation of serines within two carboxyl terminal sites is also required for maximal lipolysis. Phosphorylation of serine 492 (site 5) triggers a massive remodeling of lipid droplets, whereby large peri-nuclear lipid droplets fragment into myriad lipid micro-droplets that scatter throughout the cytoplasm. We hypothesize that perilipin A binds accessory proteins to provide assistance in carrying out these functions.  相似文献   

3.
The perilipins are the most abundant proteins at the surfaces of lipid droplets in adipocytes and are also found in steroidogenic cells. To investigate perilipin function, perilipin A, the predominant isoform, was ectopically expressed in fibroblastic 3T3-L1 pre-adipocytes that normally lack the perilipins. In control cells, fluorescent staining of neutral lipids with Bodipy 493/503 showed a few minute and widely dispersed lipid droplets, while in cells stably expressing perilipin A, the lipid droplets were more numerous and tightly clustered in one or two regions of the cytoplasm. Immunofluorescence microscopy revealed that the ectopic perilipin A localized to the surfaces of the tiny clustered lipid droplets; subcellular fractionation of the cells using sucrose gradients confirmed that the perilipin A localized exclusively to lipid droplets. Cells expressing perilipin A stored 6-30-fold more triacylglycerol than control cells due to reduced lipolysis of triacylglycerol stores. The lipolysis of stored triacylglycerol was 5 times slower in lipid-loaded cells expressing perilipin A than in lipid-loaded control cells, when triacylglycerol synthesis was blocked with 6 microm triacsin C. This stabilization of triacylglycerol was not due to the suppression of triacylglycerol lipase activity by the expression of perilipin A. We conclude that perilipin A increases the triacylglycerol content of cells by forming a barrier that reduces the access of soluble lipases to stored lipids, thus inhibiting triacylglycerol hydrolysis. These studies suggest that perilipin A plays a major role in the regulation of triacylglycerol storage and lipolysis in adipocytes.  相似文献   

4.
Perilipins, the major structural proteins coating the surfaces of mature lipid droplets of adipocytes, play an important role in the regulation of triacylglycerol storage and hydrolysis. We have used proteomic analysis to identify CGI-58, a member of the alpha/beta-hydrolase fold family of enzymes, as a component of lipid droplets of 3T3-L1 adipocytes. CGI-58 mRNA is highly expressed in adipose tissue and testes, tissues that also express perilipins, and at lower levels in liver, skin, kidney, and heart. Both endogenous CGI-58 and an ectopic CGI-58-GFP chimera show diffuse cytoplasmic localization in 3T3-L1 preadipocytes, but localize almost exclusively to the surfaces of lipid droplets in differentiated 3T3-L1 adipocytes. The localization of endogenous CGI-58 was investigated in 3T3-L1 cells stably expressing mutated forms of perilipin using microscopy. CGI-58 binds to lipid droplets coated with perilipin A or mutated forms of perilipin with an intact C-terminal sequence from amino acid 382 to 429, but not to lipid droplets coated with perilipin B or mutated perilipin A lacking this sequence. Immunoprecipitation studies confirmed these findings, but also showed co-precipitation of perilipin B and CGI-58. Remarkably, activation of cAMP-dependent protein kinase by the incubation of 3T3-L1 adipocytes with isoproterenol and isobutylmethylxanthine disperses CGI-58 from the surfaces of lipid droplets to a cytoplasmic distribution. This shift in subcellular localization can be reversed by the addition of propanolol to the culture medium. Thus, CGI-58 binds to perilipin A-coated lipid droplets in a manner that is dependent upon the metabolic status of the adipocyte and the activity of cAMP-dependent protein kinase.  相似文献   

5.
Perilipin A coats the lipid storage droplets in adipocytes and is polyphosphorylated by protein kinase A (PKA); the fact that PKA activates lipolysis in adipocytes suggests a role for perilipins in this process. To assess whether perilipins participate directly in PKA-mediated lipolysis, we have expressed constructs coding for native and mutated forms of the two major splice variants of the perilipin gene, perilipins A and B, in Chinese hamster ovary fibroblasts. Perilipins localize to lipid droplet surfaces and displace the adipose differentiation-related protein that normally coats the droplets in these cells. Perilipin A inhibits triacylglycerol hydrolysis by 87% when PKA is quiescent, but activation of PKA and phosphorylation of perilipin A engenders a 7-fold lipolytic activation. Mutation of PKA sites within the N-terminal region of perilipin abrogates the PKA-mediated lipolytic response. In contrast, perilipin B exerts only minimal protection against lipolysis and is unresponsive to PKA activation. Since Chinese hamster ovary cells contain no PKA-activated lipase, we conclude that the expression of perilipin A alone is sufficient to confer PKA-mediated lipolysis in these cells. Moreover, the data indicate that the unique C-terminal portion of perilipin A is responsible for its protection against lipolysis and that phosphorylation at the N-terminal PKA sites attenuates this protective effect.  相似文献   

6.
A lipid droplet (LD)-associated protein, perilipin, is a critical regulator of lipolysis in adipocytes. We previously showed that Comparative Gene Identification-58 (CGI-58), a product of the causal gene of Chanarin-Dorfman syndrome, interacts with perilipin on LDs. In this study, we investigated the function of CGI-58 using RNA interference. Notably, CGI-58 knockdown caused an abnormal accumulation of LDs in both 3T3-L1 preadipocytes and Hepa1 hepatoma cells. CGI-58 knockdown did not influence the differentiation of 3T3-L1 adipocytes but reduced the activity of both basal and cAMP-dependent protein kinase-stimulated lipolysis. In vitro studies showed that CGI-58 itself does not have lipase/esterase activity, but it enhanced the activity of adipose triglyceride lipase. Upon lipolytic stimulation, endogenous CGI-58 was rapidly dispersed from LDs into the cytosol along with small particulate structures. This shift in localization depends on the phosphorylation of perilipin, because phosphorylated perilipin lost the ability to bind CGI-58. During lipolytic activation, LDs in adipocytes vesiculate into micro-LDs. Using coherent anti-Stokes Raman scattering microscopy, we pursued the formation of micro-LDs in single cells, which seemed to occur in cytoplasmic regions distant from the large central LDs. CGI-58 is not required for this process. Thus, CGI-58 facilitates lipolysis in cooperation with perilipin and other factors, including lipases.  相似文献   

7.
脂滴包被蛋白(perilipin)调控脂肪分解   总被引:8,自引:0,他引:8  
Xu C  He JH  Xu GH 《生理科学进展》2006,37(3):221-224
脂滴包被蛋白(perilipin)包被在脂肪细胞和甾体生成细胞脂滴表面。基础状态下perilipin可减少甘油三酯水解,使其贮备增加;脂肪分解时磷酸化的perilipin能促进甘油三酯水解,而且该蛋白对激素敏感脂酶从胞浆向脂滴转位是必需的。据推测,perilipin可能在脂肪分解调控中起到“分子开关”的作用。蛋白激酶A(PKA)、细胞外信号调节激酶(ERK)等信号转导通路参与了脂肪分解。肿瘤坏死因子仅(TNFα)、过氧化物酶体增殖物激活受体γ(PPAγ)激动剂、瘦素(leptin)均可以影响perilipin的表达。新近研究表明,perilipin可通过蛋白酶体途径来调节其蛋白量的表达。脂肪分解调控中的关键蛋白perilipin可以和2型糖尿病、肥胖、动脉粥样硬化等多种代谢性疾病及心血管疾病联系起来。  相似文献   

8.
Perilipins regulate triacylglycerol storage and hydrolysis in adipocytes. The central 25% of the perilipin A sequence, including three hydrophobic sequences (H1, H2, and H3) and an acidic region, targets and anchors perilipins to lipid droplets. Thus, we hypothesized that H1, H2, and H3 are targeting and anchoring motifs. We now show that deletion of any single hydrophobic sequence or combinations of H1 and H3 or H2 and H3 does not prevent targeting of the mutated perilipin to lipid droplets. In contrast, mutated perilipin lacking H1 and H2 showed reduced targeting, whereas perilipin lacking H1, H2, and H3 targeted poorly to lipid droplets; thus, H3 is a weak targeting signal and either H1 or H2 is required for optimal targeting. Complete elimination of perilipin targeting was observed only when all three hydrophobic sequences were deleted in combination with either the acidic region or N-terminal sequences predicted to form amphipathic beta-strands. Unlike intact perilipin A, mutated perilipin lacking either H1 and H2 or H1, H2, and H3 was released from lipid droplets after alkaline carbonate treatment, suggesting that these forms are loosely associated with lipid droplets. The three hydrophobic sequences play a major role in targeting and anchoring perilipins to lipid droplets.  相似文献   

9.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

10.
Perilipin A is a key regulator of triacylglycerol storage and hydrolysis in adipocytes; phosphorylation of perilipin A by protein kinase A facilitates maximal lipolysis. Chronic stimulation of lipolysis in 3T3-L1 adipocytes causes large perinuclear lipid droplets to fragment into myriad dispersed perilipin A-covered microlipid droplets. In cultured fibroblasts stably expressing ectopic perilipin A, clustered lipid droplets disperse throughout the cytoplasm upon incubation of the cells with forskolin and isobutylmethylxanthine (IBMX) to elevate levels of cAMP and activate protein kinase A, mirroring events observed in adipocytes. Furthermore, diethylum-belliferyl phosphate inhibits stimulated lipolysis but not the dispersion of lipid droplets, suggesting that products of lipolysis are not required for this remodeling process. We hypothesized that protein kinase A-mediated phosphorylation of perilipin A triggers the remodeling of lipid droplets. The mutation of serine 492 of perilipin A to alanine prevented the dispersion of clustered lipid droplets in fibroblasts stably expressing the mutated perilipin upon incubation with forskolin and IBMX. In contrast, the substitution of serines 81, 222, 276, or 433 with alanine, either singly or in combinations, did not affect the protein kinase A-mediated remodeling of lipid droplets. Interestingly, substitution of serines 433, 492, and 517 of perilipin A with glutamic acid residues blocked the dispersion of clustered lipid droplets in cells incubated with forskolin and IBMX, indicating that the addition of a negative charge does not mimic a phosphate group. We conclude that protein kinase A-mediated phosphorylation of serine 492 of perilipin A drives the fragmentation and dispersion of lipid droplets.  相似文献   

11.
Adipocytes serve as the principal energy reservoir of the body; however, the subcellular organization of the machinery regulating lipid trafficking and metabolism is poorly understood. Mobilization of stored triglyceride is thought be controlled by interactions among intracellular lipases and proteins that coat lipid storage droplets. A major limitation of previous studies of hormone-mediated lipolysis, however, is the use of cultured model adipocytes whose three-dimensional architectures do not resemble those in real adipose tissue. To address this limitation, we investigated the intracellular targeting of perilipin, a major lipid coat protein, and hormone-sensitive lipase in three preparations that exhibit more appropriate morphologies: 3T3-L1 adipocytes grown in three-dimensional matrix, dissociated mature adipocytes from mouse adipose tissue, and adipocytes within intact fat pads. High resolution imaging of native and fluorescently tagged proteins indicate that: 1) perilipin preferentially targets a special class of peripheral lipid storage droplets, but not the major or central lipid storage droplets, 2) the peripheral droplets are the sites of attack by hormone-sensitive lipase, and 3) perilipin and hormone-sensitive lipase are continuously colocalized following lipolytic activation. These results indicate that in white adipose tissue, lipolysis takes place in a specialized subcellular domain that is distinct from the major lipid storage site and is defined by perilipin.  相似文献   

12.
Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions in regulating lipolysis. We investigated mechanisms by which three perilipin proteins control lipolysis by adipocyte triglyceride lipase (ATGL), a key lipase in adipocytes and non-adipose cells. Using a cell culture model, we examined interactions of ATGL and its co-lipase CGI-58 with perilipin 1 (perilipin A), perilipin 2 (adipose differentiation-related protein), and perilipin 5 (LSDP5) using multiple techniques as follows: anisotropy Forster resonance energy transfer, co-immunoprecipitation, [(32)P]orthophosphate radiolabeling, and measurement of lipolysis. The results show that ATGL interacts with CGI-58 and perilipin 5; the latter is selectively expressed in oxidative tissues. Both proteins independently recruited ATGL to the LD surface, but with opposite effects; interaction of ATGL with CGI-58 increased lipolysis, whereas interaction of ATGL with perilipin 5 decreased lipolysis. In contrast, neither perilipin 1 nor 2 interacted directly with ATGL. Activation of protein kinase A (PKA) increased [(32)P]orthophosphate incorporation into perilipin 5 by 2-fold, whereas neither ATGL nor CGI-58 was labeled under the incubation conditions. Cells expressing both ectopic perilipin 5 and ATGL showed a 3-fold increase in lipolysis following activation of PKA. Our studies establish perilipin 5 as a novel ATGL partner and provide evidence that the protein composition of perilipins at the LD surface regulates lipolytic activity of ATGL.  相似文献   

13.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

14.
Lipid droplets (LDs) are a class of ubiquitous cellular organelles that are involved in lipid storage and metabolism. Although the mechanisms of the biogenesis of LDs are still unclear, a set of proteins called the PAT domain family have been characterized as factors associating with LDs. Perilipin, a member of this family, is expressed exclusively in the adipose tissue and regulates the breakdown of triacylglycerol in LDs via its phosphorylation. In this study, we used a yeast two-hybrid system to examine the potential function of perilipin. We found direct interaction between perilipin and CGI-58, a deficiency of which correlated with the pathogenesis of Chanarin-Dorfman syndrome (CDS). Endogenous CGI-58 was distributed predominantly on the surface of LDs in differentiated 3T3-L1 cells, and its expression increased during adipocyte differentiation. Overexpressed CGI-58 tagged with GFP gathered at the surface of LDs and colocalized with perilipin. This interaction seems physiologically important because CGI-58 mutants carrying an amino acid substitution identical to that found in CDS lost the ability to be recruited to LDs. These mutations significantly weakened the binding of CGI-58 with perilipin, indicating that the loss of this interaction is involved in the etiology of CDS. Furthermore, we identified CGI-58 as a binding partner of ADRP, another PAT domain protein expressed ubiquitously, by yeast two-hybrid assay. GFP-CGI-58 expressed in non-differentiated 3T3-L1 or CHO-K1 cells was colocalized with ADRP, and the CGI-58 mutants were not recruited to LDs carrying ADRP, indicating that CGI-58 may also cooperate with ADRP.  相似文献   

15.
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.  相似文献   

16.
17.
This study aimed to investigate the relationship between newly formed lipid droplets and lipid droplet surface proteins, including perilipin, adipose differentiation related protein (ADRP), and p200 kDa protein (p200) in 3T3-L1 preadipocytes, during lipogenesis. Sterol ester was used to induce nascent lipid droplets in 3T3-L1 preadipocytes and the sequence of lipids and lipid droplet surface proteins was studied using a combination of immunohistochemistry and Nile red staining/Oil red O. We demonstrated that, although most growing lipid droplets appeared to have a lipid core surrounded by a fluorescent rim of ADRP, perilipin, and p200, tiny protein aggregates of ADRP, perilipin, or p200 could also be found to occur in the absence of lipid accumulation. In addition, ADRP associated with nascent lipid droplets prior to that of perilipin or p200. We provide evidence that lipid droplet surface proteins, especially ADRP and perilipin, are important in serving as a nucleation center for the assembly of lipid to form nascent lipid droplets.  相似文献   

18.
In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin, a lipid droplet-associated protein that is the major regulator of lipolysis. We investigated the role of perilipin PKA phosphorylation in BAT NE-stimulated thermogenesis using a novel mouse model in which a mutant form of perilipin, lacking all six PKA phosphorylation sites, is expressed in adipocytes of perilipin knockout (Peri KO) mice. Here, we show that despite a normal mitochondrial respiratory capacity, NE-induced lipolysis is abrogated in the interscapular brown adipose tissue (IBAT) of these mice. This lipolytic constraint is accompanied by a dramatic blunting ( approximately 70%) of the in vivo thermal response to NE. Thus, in the presence of perilipin, PKA-mediated perilipin phosphorylation is essential for NE-dependent lipolysis and full adaptive thermogenesis in BAT. In IBAT of Peri KO mice, increased basal lipolysis attributable to the absence of perilipin is sufficient to support a rapid NE-stimulated temperature increase ( approximately 3.0 degrees C) comparable to that in wild-type mice. This observation suggests that one or more NE-dependent mechanism downstream of perilipin phosphorylation is required to initiate and/or sustain the IBAT thermal response.  相似文献   

19.
Chemerin--a new adipokine that modulates adipogenesis via its own receptor   总被引:5,自引:0,他引:5  
Chemerin, an 18 kDa protein secreted by adipose tissue, was reported to modulate immune system function through its binding to the chemerin receptor (chemerinR). We herein demonstrate that chemerin also influences adipose cell function. Our data showed that chemerin and chemerinR mRNA expressions were highly expressed in adipose tissues, and that their expression levels were up-regulated in mice fed a high-fat diet. Both chemerin and chemerinR mRNA expression dramatically increased during the differentiation of 3T3-L1 cells and human preadipocytes into adipocytes. Furthermore, recombinant chemerin induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2) and lipolysis in differentiated 3T3-L1 adipocytes. Thus, the adipokine chemerin likely regulates adipocyte function by autocrine/paracrine mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号