首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Src homology 2 (SH2) domains are evolutionary conserved small protein modules that bind specifically to tyrosine-phosphorylated peptides. More than 100 SH2 domains have been identified in proteins encoded by the human genome. The binding specificity of these domains plays a critical role in signaling within the cell, mediating the relocalization and interaction of proteins in response to changes in tyrosine phosphorylation states. Here we developed an SH2 domain profiling method based on a multiplexed fluorescent microsphere assay in which various SH2 domains are used to probe the global state of tyrosine phosphorylation within a cell and to screen synthetic peptides that specifically bind to each SH2 domain. The multiplexed, fluorescent microsphere-based assay is a recently developed technology that can potentially detect a wide variety of interactions between biological molecules. We constructed 25-plex SH2 domain-GST fusion protein-conjugated fluorescent microsphere sets to investigate phosphorylation-mediated cell signaling through the specific binding of SH2 domains to activated target proteins. The response of HeLa, COS-1, A431, and 293 cells and four breast cancer cell lines to epidermal growth factor and insulin were quantitatively profiled using this novel microsphere-based, multiplexed, high throughput assay system.  相似文献   

2.
Deciphering global signaling networks is of great importance for the detailed understanding of cellular signaling processes controlling many important biological functions. Among signaling processes, tyrosine phosphorylation has a central role. At present, adequate techniques for the global characterization of the tyrosine phosphoproteome are lacking, particularly for the analysis of small amounts of protein. By combining the power of PCR amplification with the unique properties of Src homology region 2 (SH2) domains to specifically recognize tyrosine-phosphorylated proteins, we developed a new proteomic approach, termed oligonucleotide-tagged multiplex assay (OTM). For OTM, multiple SH2 domains are labeled by domain-specific oligonucleotide tags, applied as probes to complex protein mixtures in a multiplex reaction and phosphotyrosine-specific interactions are quantified by PCR. Using OTM we reproducibly quantified differential states of tyrosine phosphorylation with high sensitivity and specificity in small amounts of whole cellular extracts as demonstrated for various tumor cell lines and human leukemia samples.  相似文献   

3.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

4.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

5.
SH2 (src homology region 2) domains are implicated in protein-protein interactions involved in signal transduction pathways. Isolated SH2 domains bind proteins that are tyrosine phosphorylated. A novel, phosphotyrosine-independent binding interaction between BCR, the Philadelphia chromosome breakpoint cluster region gene product, and the SH2 domain of its translocation partner c-ABL has recently been reported. We have examined the ability of additional SH2 domains to bind phosphotyrosine-free BCR and compared this with their ability to bind tyrosine-phosphorylated c-ABL 1b. Of 11 individual SH2 domains examined, 8 exhibited relatively high affinity for c-ABL 1b, whereas only 4 exhibited relatively high affinity for BCR. Binding of tyrosine-phosphorylated c-ABL 1b by the relatively high-affinity ABL and ARG SH2 domains was quantitatively analyzed, and equilibrium dissociation constants for both interactions were estimated to be in the range of 5 x 10(-7) M. The ABL SH2 domain exhibited relatively high affinity for phosphotyrosine-free BCR as well; however, this interaction appears to be about two orders of magnitude weaker than binding of tyrosine-phosphorylated c-ABL 1b. The ARG SH2 domain exhibited relatively weak affinity for BCR and was determined to bind about 10-fold less strongly than the ABL SH2 domain. The ABL and ARG SH2 domains differ by only 10 of 91 amino acids, and the substitution of ABL-specific amino acids into either the amino- or carboxy-terminal half of the ARG SH2 domain was found to increase its affinity for BCR. We discuss these results in terms of a model which has been proposed for peptide binding by class I histocompatibility glycoproteins.  相似文献   

6.
Protein tyrosine phosphorylation controls many aspects of signaling in multicellular organisms. One of the major consequences of tyrosine phosphorylation is the creation of binding sites for proteins containing Src homology 2 (SH2) domains. To profile the global tyrosine phosphorylation state of the cell, we have developed proteomic binding assays encompassing nearly the full complement of human SH2 domains. Here we provide a global view of SH2 domain binding to cellular proteins based on large-scale far-western analyses. We also use reverse-phase protein arrays to generate comprehensive, quantitative SH2 binding profiles for phosphopeptides, recombinant proteins, and entire proteomes. As an example, we profiled the adhesion-dependent SH2 binding interactions in fibroblasts and identified specific focal adhesion complex proteins whose tyrosine phosphorylation and binding to SH2 domains are modulated by adhesion. These results demonstrate that high-throughput comprehensive SH2 profiling provides valuable mechanistic insights into tyrosine kinase signaling pathways.  相似文献   

7.
BACKGROUND: SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS: We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS: We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.  相似文献   

8.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

9.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   

10.
《The Journal of cell biology》1994,126(5):1299-1309
We describe a novel approach to study tyrosine-phosphorylated (PY) integrins in cells transformed by virally encoded tyrosine kinases. We have synthesized a peptide (PY beta 1 peptide) that represents a portion of the cytoplasmic domain of the beta 1 integrin subunit and is phosphorylated on the tyrosine residue known to be the target of oncogenic tyrosine kinases. Antibodies prepared against the PY beta 1 peptide, after removal of cross-reacting antibodies by absorption and affinity purification, recognized the PY beta 1 peptide and the tyrosine-phosphorylated form of the intact beta 1 subunit, but did not bind the nonphosphorylated beta 1 peptide, the nonphosphorylated beta 1 subunit or other unrelated tyrosine-phosphorylated proteins. The anti- PY beta 1 antibodies labeled the podosomes of Rous sarcoma virus- transformed fibroblasts, but did not detectably stain nontransformed fibroblasts. The localization of the tyrosine phosphorylated beta 1 subunits appeared distinct from that of the beta 1 subunit. Adhesion plaques were stained by the anti-beta 1 subunit antibodies in Rous sarcoma virus-transformed fibroblasts plated on fibronectin, whereas neither podosomes nor adhesion plaques were labeled on vitronectin or on uncoated plates. Anti-phosphotyrosine antibodies labeled podosomes, adhesion plaques and cell-cell boundaries regardless of the substratum. One of the SH2 domains of the p85 subunit of phosphatidylinositol-3- kinase bound to the PY beta 1 peptide, but not to the non- phosphorylated beta 1 cytoplasmic peptide. Other SH2 domains did not bind to the PY beta 1 peptide. These results show that the phosphorylated form of the beta 1 integrin subunit is detected in a different subcellular localization than the nonphosphorylated form and suggest that the phosphorylation on tyrosine of the beta 1 subunit cytoplasmic domain may affect cellular signaling pathways.  相似文献   

11.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

12.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

13.
Src homology 2 (SH2) domains are protein modules (of approximately 100 amino acids) found in many proteins involved in tyrosine kinase signalling cascades. Their function is to bind tyrosine-phosphorylated sequences in specific protein targets. Binding of an SH2 domain to its cognate tyrosine-phosphorylated target links receptor activation to downstream signalling, both to the nucleus to regulate gene expression and throughout the cytoplasm of the cell. This review recapitulates the roles that SH2 domains play in normal and diseased states, describes the successes of SH2 domain research in deciphering their mechanism of action, and provides an overview of the use of SH2 domains as structural templates for the design of inhibitor drugs.  相似文献   

14.
Increasing evidence indicates that tyrosine phosphorylation, controlled by the concerted action of tyrosine kinases and protein tyrosine phosphatases (PTPs), plays important roles in retinal photoreceptor rod outer segments (ROS). We characterized PTP activity in isolated bovine ROS that is significantly inhibited by orthovanadate. Incubating ROS in the presence of exogenous Mg2+, ATP, and orthovanadate dramatically enhanced the tyrosine phosphorylation of several endogenous proteins. SHP-2, a PTP with two SH2 domains, was identified in ROS by immunoblot analysis and was found to associate with ROS membranes. Immunocytochemistry showed localization of SHP-2 in photoreceptor outer segments and possibly in the outer plexiform, inner nuclear, and inner plexiform cell layers of the retina as well. SHP-2 associated with transducin-alpha and a 97-kDa tyrosine-phosphorylated protein in ROS, suggesting the formation of a multimeric signaling complex. Based on its association with transducin-alpha and a 97-kDa protein, SHP-2 may regulate the tyrosine phosphorylation of endogenous proteins, including transducin-alpha, and may play a significant role in a novel signaling pathway in photoreceptors.  相似文献   

15.
Transformation of chicken embryo cells by oncogenic forms of pp60src (e.g., pp60v-src or pp60527F) is linked with a concomitant increase in the steady-state levels of tyrosine-phosphorylated cellular proteins. Activated forms of the Src protein-tyrosine kinase stably associate with tyrosine-phosphorylated proteins, including a protein of 110 kDa, pp110. Previous reports have established that stable complex formation between pp110 and pp60src requires the structural integrity of the Src SH2 and SH3 domains, whereas tyrosine phosphorylation of pp110 requires only the structural integrity of the SH3 domain. In normal chicken embryo cells, pp110 colocalizes with actin stress filaments, and in Src-transformed cells, pp110 is found associated with podosomes (rosettes). Here, we report the identification and characterization of cDNAs encoding pp110. The predicted open reading frame encodes a polypeptide of 635 amino acids which exhibits little sequence similarity with other protein sequences present in the available sequence data bases. Thus, pp110 is a distinctive cytoskeleton-associated protein. On the basis of its association with actin stress filaments, we propose the term AFAP-110, for actin filament-associated protein of 110 kDa. In vitro analysis of AFAP-110 binding to bacterium-encoded glutathione S-transferase (GST) fusion proteins revealed that AFAP-110 present in normal cell extracts binds efficiently to Src SH3/SH2-containing fusion proteins, less efficiently to Src SH3-containing proteins, and poorly to SH2-containing fusion proteins. In contrast, AFAP-110 in Src-transformed cell extracts bound to GST-SH3/SH2 and GST-SH2 fusion proteins. Analysis of AFAP-110 cDNA sequences revealed the presence of sequence motifs predicted to bind to SH2 and SH3 domains, respectively. We suggest that AFAP-110 may represent a cellular protein capable of interacting with SH3-containing proteins and, upon tyrosine phosphorylation, binds tightly to SH2-containing proteins, such as pp60src or pp59fyn. The potential roles of AFAP-110 as an SH3/SH2 cytoskeletal binding protein are discussed.  相似文献   

16.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

17.
Eph-related receptor tyrosine kinases have been implicated in the control of axonal navigation and fasciculation. To investigate the biochemical mechanisms underlying such functions, we have expressed the EphB2 receptor (formerly Nuk/Cek5/Sek3) in neuronal NG108-15 cells, and have observed the tyrosine phosphorylation of multiple cellular proteins upon activation of EphB2 by its ligand, ephrin-B1 (formerly Elk-L/Lerk2). The activated EphB2 receptor induced the tyrosine phosphorylation of a 62-64 kDa protein (p62[dok]), which in turn formed a complex with the Ras GTPase-activating protein (RasGAP) and SH2/SH3 domain adaptor protein Nck. RasGAP also bound through its SH2 domains to tyrosine-phosphorylated EphB2 in vitro, and complexed with activated EphB2 in vivo. We have localized an in vitro RasGAP-binding site to conserved tyrosine residues Y604 and Y610 in the juxtamembrane region of EphB2, and demonstrated that substitution of these amino acids abolishes ephrin-B1-induced signalling events in EphB2-expressing NG108-15 cells. These tyrosine residues are followed by proline at the + 3 position, consistent with the binding specificity of RasGAP SH2 domains determined using a degenerate phosphopeptide library. These results identify an EphB2-activated signalling cascade involving proteins that potentially play a role in axonal guidance and control of cytoskeletal architecture.  相似文献   

18.
The cellular actions of nerve growth factor (NGF) involve changes in protein phosphorylation, initiated by the binding and subsequent activation of its tyrosine kinase receptor, the trk protooncogene (pp140c-trk). Upon exposure to NGF, a 38-kDa tyrosine-phosphorylated protein (pp38) is identified in both PC-12 pheochromocytoma cells and NIH3T3 cells transfected with the full-length human pp140c-trk cDNA (3T3-c-trk) that is specifically coimmunoprecipitated with pp140c-trk or phosphatidylinositol-phospholipase C (PLC)-gamma 1. In both PC-12 and 3T3-c-trk cells, NGF rapidly stimulates the association of pp140c-trk and pp38 with a fusion protein containing the src homology (SH) domains of PLC gamma 1. This phosphorylation and subsequent association are specific for NGF, since epidermal growth factor, platelet-derived growth factor, and insulin do not stimulate the tyrosine phosphorylation of these proteins or their association with the PLC gamma 1 SH domains, although the receptors for these growth factors do undergo tyrosine phosphorylation and association with the PLC-gamma 1 fusion protein under these conditions. Furthermore, the NGF-dependent pp38-SH binding is specific for the SH2 domains of PLC-gamma 1, since the phosphoprotein does not bind to fusion proteins containing SH domains of ras GTPase-activating protein or the p85 subunit of phosphatidylinositol 3 kinase. Both amino- and carboxyl-terminal SH2 domains of PLC-gamma 1 are necessary for the association of pp38 with PLC-gamma 1, although each SH2 domain is sufficient for the association of pp140c-trk with PLC-gamma 1. In both PC-12 and 3T3-c-trk cells, the phosphorylation and association of pp38 with PLC gamma 1 is rapid, occurring maximally at 1 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over a physiological concentration of the growth factor. The specificity and rapidity of pp38 phosphorylation and its association with PLC-gamma 1 suggest that it may be an important component in signal transduction for NGF.  相似文献   

19.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

20.
M Ohmichi  S J Decker  A R Saltiel 《Neuron》1992,9(4):769-777
Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号