首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

2.
The effect of Ca2+-mobilizing hormones, vasopressin, angiotensin II and the alpha-adrenergic agonist phenylephrine, on the metabolic flux through the tricarboxylic acid cycle was investigated in isolated perfused rat livers. All three Ca2+-mobilizing agonists stimulated 14CO2 production and gluconeogenesis in livers of 24-h-fasted rats perfused with [2-14C]pyruvate. Prazosin blocked the phenylephrine-elicited stimulation of 14CO2 and glucose production from [2-14C]pyruvate whereas the alpha 2-adrenergic agonist, BHT-933, did not affect the rates of 14CO2 and glucose production from [2-14C]pyruvate indicating that the phenylephrine-mediated response involved alpha 1-adrenergic receptors. Phenylephrine, vasopressin and angiotensin II stimulated 14CO2 production from [2-14C]acetate in livers derived from fed rats but not in livers of 24-h-fasted rats. In livers of 24-h-fasted rats, perfused with [2-14C]acetate, exogenously added pyruvate was required for an increase in the rate of 14CO2 production during phenylephrine infusion. This last observation suggests increased pyruvate carboxylation as one of the mechanisms involved in stimulation of tricarboxylic acid cycle activity by the Ca2+-mobilizing agonists, vasopressin, angiotensin II and phenylephrine.  相似文献   

3.
The relative importance of the mitochondrial and cytosolic alanine aminotransferase isozymes for providing pyruvate from alanine for further metabolism in the mitochondrial compartment was examined in the isolated perfused rat liver. The experimental rationale employed depends upon the supposition that gluconeogenesis from alanine and the decarboxylation of infused [1-14C]alanine should be diminished by pyruvate transport inhibitors (e.g., alpha-cyanocinnamate) in proportion to the contribution of the cytosolic alanine aminotransferase for generating pyruvate. alpha-Cyanocinnamate inhibited the endogenous rate of glucose production in perfused livers derived from 24-h-fasted rats. The rate of [1-14C]alanine decarboxylation at low (1 mM) and high (10 mM) perfusate alanine concentrations was inhibited by 9.5 and 42%, respectively, in the presence of alpha-cyanocinnamate. In livers from fasted animals perfused with either 1 or 10 mM alanine, alpha-cyanocinnamate caused a substantial increase in the rates of both lactate and pyruvate production. Elevating the hepatic ketogenic rate during infusion of acetate in livers, perfused with alanine, stimulated both the rates of alanine decarboxylation and glucose production; the extent of stimulation of these two metabolic parameters was determined to be a function of the alanine concentration in the perfusate. The stimulation of the rate of alanine decarboxylation during acetate-induced ketogenesis was reversed by co-infusion of alpha-cyanocinnamate with simultaneous increases in the rates of lactate and pyruvate production. The results indicate that during rapid ketogenesis, cytosolic transamination of alanine contributes at least 19% (at 1 mM alanine) and 55% (at 10 mM alanine) of the pyruvate for gluconeogenesis.  相似文献   

4.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

5.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

6.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

7.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

8.
The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.  相似文献   

9.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

10.
To identify the role of Ca2+ mobilization from intracellular pool(s) in the action of alpha-adrenergic agonist, the effects of dantrolene on phenylephrine-induced glycogenolysis were investigated in perfused rat liver. Dantrolene (5 X 10(-5) M) inhibited both glycogenolysis and 45Ca efflux induced by 5 X 10(-7) M phenylephrine. The inhibition by dantrolene was observed in the presence and absence of perfusate calcium. In contrast, dantrolene did not inhibit glycogenolysis induced by glucagon. To confirm the specificity of dantrolene action on calcium release in liver, experiments were also carried out using isolated hepatocytes. Dantrolene did not affect phenylephrine-induced production of inositol 1,4,5-trisphosphate. The compound did inhibit a rise in cytoplasmic Ca2+ concentration induced by phenylephrine both in the presence and absence of extracellular Ca2+. Thus, these results suggest that calcium release from an intracellular pool is essential for the initiation of alpha-adrenergic stimulation of glycogenolysis in the perfused rat liver.  相似文献   

11.
Interactions between phenylephrine-induced oxygen consumption, lactate and pyruvate output, and urea and glucose production were examined in perfused livers from fed or 48-h-fasted rats. Within 2 min of phenylephrine infusion, oxygen consumption in perfused livers was increased by approximately 40%. Increases in oxygen consumption induced by phenylephrine were essentially abolished in the presence of carboxyatractyloside, whereas those induced by dinitrophenol were still evident. Phenylephrine-induced increases in oxygen consumption were accompanied by enhanced rates of gluconeogenesis and ureogenesis in livers from fed or 48-h-fasted animals. These data indicate that phenylephrine-induced increases in respiration in perfused rat liver may result from an enhanced rate of mitochondrial oxidative phosphorylation in response to an increased cellular energy requirement.  相似文献   

12.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

13.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

14.
Quinolinic acid (Q.A.) which inhibits gluconeogenesis at the site of phosphoenolpyruvate (PEP) synthesis, reduced the content of PEP while elevating that of aspartate and malate in rat livers perfused with a medium containing 10 mM L-lactate. Glucagon at 10(-9) M did not affect Q.A. inhibition of lactate gluconeogenesis nor the depression of PEP level, but further elevated malate and aspartate accumulation. Exogenous butyrate had the same effect as glucagon on these parameters. Butylmalonate (BM), an inhibitor of mitochondrial malate transport, inhibited lactate and propionate gluconeogenesis to similar extents. The addition of 10(-9) M glucagon had no effect on BM inhibition of lactate gluconeogenesis, but almost completely reversed BM inhibition of propionate gluconeogenesis. These results suggest that glucagon may act on at least two sites, resulting in elevated hepatic gluconeogenesis. First, it may stimulate dicarboxylic acid synthesis (malate and oxaloacetate, specifically) through activation of pyruvate carboxylation. Secondly, it may stimulate synthesis of other dicarboxylic acids (fumarate, for example) by activating certain steps of the tricarboxylic acid cycle. The stimulatory effect of glucagon on gluconeogenesis in the perfused rat liver is well documented (1, 2). Exton et al., who earlier located the site of stimulation between pyruvate and PEP synthesis (3), proposed that glucagon stimulated PEP synthesis in the perfused rat liver (4), while reports from Williamson et al. (5) suggested the pyruvate-carboxylase reaction as the site of glucagon action. Stimulation at sites above PEP formation and of portions of the tricarboxylic acid cycle (4) by glucagon have also been suggested (6). In the present experiments, we have used substrates entering at different parts of the gluconeogenic pathway, and specific inhibitors to further resolve the action of glucagon.  相似文献   

15.
V B Lawlis  T E Roche 《Biochemistry》1981,20(9):2519-2524
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.  相似文献   

16.
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.  相似文献   

17.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

18.
The Ca2+ content of hepatocytes from juvenile male rats (80-110 g) or adult female rats (135-155 g) displayed a biphasic dose-response curve to epinephrine. Low concentrations (less than or equal to 10(-7) M) caused efflux of Ca2+ from the cells, while higher concentrations (10(-6) M and 10(-5) M) induced net Ca2+ uptake which correlated with a large beta 2-adrenergic-mediated increase in cAMP (Morgan, N. G., Blackmore, P. F., and Exton, J. H. (1983) J. Biol. Chem. 258, 5103-5109). Calcium accumulation could be induced in cells from older male rats (180-230 g) by combining a Ca2+-mobilizing hormone with either exogenous cAMP or glucagon (10(-8) M). Readdition of Ca2+ in the presence of glucagon to cells treated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid also resulted in enhanced Ca2+ accumulation compared with controls. Addition of vasopressin plus glucagon to the medium perfusing male rat livers also led to cell Ca2+ accumulation, as evidenced by uptake of Ca2+ from the perfusate. Incubation of hepatocytes with antimycin A, oligomycin, and carbonyl cyanide m-chlorophenylhydrazone prevented net Ca2+ accumulation suggesting that mitochondria play a role in the uptake response. This was confirmed by isolation of mitochondria from cells incubated under conditions which promote Ca2+ accumulation. Within 5 min of incubation, the Ca2+ content of these mitochondria was increased 2-fold relative to controls, an effect which was inhibited by oligomycin. These studies demonstrate that a rise in hepatic cAMP can reverse hormonally induced Ca2+ mobilization and point to a major role for the mitochondria in this effect.  相似文献   

19.
Production of [14C]glucose from [14C]lactate in the perfused livers of 24-h fasted adrenalectomized rats was not stimulated by 1 nM glucagon but was significantly increased by 10 nM hormone. Crossover analysis of glycolytic intermediates in these livers revealed a significant reduction in glucagon action at site(s) between fructose 6-phosphate and fructose 1,6-bisphosphate as a result of adrenalectomy. Site(s) between pyruvate and P-enolpyruvate was not affected. In isolated hepatocytes, adrenalectomy reduced glucagon response in gluconeogenesis while not affecting glucagon inactivation of pyruvate kinase. A distinct lack of glucagon action on 6-phosphofructo-1-kinase activity was noted in these cells. When hepatocytes were incubated with 30 mM glucose, lactate gluconeogenesis was greatly stimulated by glucagon. A reduction in both sensitivity and responsiveness to the hormone in gluconeogenesis was seen in the adrenalectomized rat. These changes were well correlated with similar impairment in glucagon action on 6-phosphofructo-1-kinase activity and fructose 2,6-bisphosphate content in hepatocytes from adrenalectomized rats incubated with 30 mM glucose. These results suggest that adrenalectomy impaired the gluconeogenic action of glucagon in livers of fasted rats at the level of regulation of 6-phosphofructo-1-kinase and/or fructose 2,6-bisphosphate content.  相似文献   

20.
T Mine  S Kimura  H Osawa  E Ogata 《Life sciences》1986,38(25):2285-2292
Cobalt ions (2 mM) inhibited the glycogenolysis induced by phenylephrine and glucagon in perfused rat liver. Cobalt ions also inhibited 45Ca++ efflux from prelabelled livers induced by phenylephrine and glucagon. In addition, they inhibited the rise in tissue levels of cyclic AMP caused by glucagon, but did not inhibit the stimulation of 45Ca++ efflux or glycogenolysis by cyclic AMP or dibutyryl cyclic AMP. The specific binding of glucagon and alpha-agonist to hepatocytes was not inhibited by cobalt ions. These data suggest that cobalt ions, presumably through their high affinity for calcium binding sites on membranes inhibit the stimulation of glycogenolysis by phenylephrine and glucagon in distinct ways; one by inhibiting calcium mobilization and the other by inhibiting cyclic AMP production. Therefore, it is conceivable that membrane-bound calcium plays an important role in stimulating Ca++ mobilization by phenylephrine, and cyclic AMP production by glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号