首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragments containing ARSes were cloned from the genomic DNA of the yeast Saccharomyces exiguus Yp74L-3, and the essential regions for ARSes were restricted for these fragments. Mapping studies of ARS-acting sequences in one of these fragments suggested that S. exiguus recognizes a sequence as an ARS that is different from that recognized by Saccharomyces cerevisiae. Two ARS essential regions of S. exiguus were sequenced, and an ARS core consensus sequence of S. exiguus was deduced to be MATTAMWAWWTK. This sequence differs significantly from that of S. cerevisiae in two positions, suggesting that these nucleotide substitutions cause the difference in the ARS-recognition modes between S. exiguus and S. cerevisiae. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

2.
A host-vector system for Zygosaccharomyces rouxii was developed. Chimeric plasmids useful as the Escherichia coli-Z. rouxii shuttle vector were constructed with a DNA fragment of pBR322, a fragment of pSR1 plasmid of Z. rouxii or the ARS1 sequence of Saccharomyces cerevisiae, and a fragment of the LEU2 gene of S. cerevisiae or a DNA fragment bearing Tn601 which confers G-418 resistance as a selective marker of the plasmid. For the hosts, wild-type strains of Z. rouxii were modified to give improved transformation frequencies or to mark a leucine-auxotrophic mutation which is complementable by the LEU2 DNA of S. cerevisiae. Transformation frequencies from several hundred to two thousand transformant clones per μg plasmid DNA samples were obtained.  相似文献   

3.
To investigate the uracil biosynthetic pathway of the yeast Saccharomyces exiguus Yp74L-3, uracil auxotrophic mutants were isolated. Using conventional genetic techniques, four mutant genes concerned in uracil biosynthesis were identified and denoted as ura1, ura2, ura3, and ura4. Mutations in the URA3 and URA4 genes were specifically selected with 5-fluoroorotic acid (5-FOA). Vector plasmids containing the URA3 gene and an autonomously replicating sequence (ARS) of S. cerevisiae produced sufficient amounts of Ura+ transformants from the ura4 mutant of S. exiguus. This fact indicates that the S. exiguus URA4 gene encodes orotidine-5′-phosphate decarboxylase (OMP decarboxylase) and demonstrates that vector plasmids for S. cerevisiae are also usable in S. exiguus.  相似文献   

4.
Summary Previous studies have indicated that DNA bending is a general structural feature of sequences (ARSs) from cellular DNAs of yeasts and nuclear and mitochondrial genomic DNAs of other eukaryotes that are capable of autonomous replication in Saccharomyces cerevisiae. Here we showed that bending activity is also tightly associated with S. cerevisiae ARS function of segments cloned from mitochondrial linear DNA plasmids of the basidiomycetes Pleurotus ostreatus and Lentinus edodes. Two plasmids, designated pLPO2-like (9.4 kb), and pLPO3 (6.6 kb) were isolated from a strain of P. ostreatus. A 1029 by fragment with high-level ARS activity was cloned from pLPO3 and it contained one ARS consensus sequence (A/T)TTTAT(A/G)TTT(A/T) indispensable for activity and seven dispersed ARS consensus-like (10/11 match) sequences. A discrete bent DNA region was found to lie around 500 by upstream from the ARS consensus sequence (T-rich strand). Removal of the bent DNA region impaired ARS function. DNA bending was also implicated in the ARS function associated with a 1430 by fragment containing three consecutive ARS consensus sequences which had been cloned from the L. edodes plasmid pLLE1 (11.0 kb): the three consecutive ARSs responsible for high-level ARS function occurred in, and immediately adjacent to, a bent DNA region. A clear difference exists between the two plasmid-derived ARS fragments with respect to the distance between the bent DNA region and the ARS consensus sequence(s).  相似文献   

5.
The number of chromosomes in the yeast Saccharomyces exiguuswas determined to be thirteen by two-dimensional pulsed-fieldgel electrophoresis. The thirteen chromosomes ranged in DNAsize from 520 to 2,600 kbp, with a total length of approximately14 Mbp. Numbers I to XIII were assigned to the chromosomes indecreasing order of DNA length. Southern hybridization analysisusing total DNAs from S. exiguus and S. cerevisiae as probesshowed that there was no significant homology between the chromosomalDNAs of the two species, except in the case of the chromosomalDNA that included rDNA. When rDNA and genes LEU2, TRP1, URA3and HO of S. cerevisiae were used as hybridization probes, itwas apparent that S. exiguus had DNA sequences homologous tothe rDNA and to the LEU2 and HO genes. In S. exiguus, rDNA-likeand LEU2-like DNAs were located on chromosomes I and IX, respectively,and HO-like DNA was located on chromosome VI or VII. (Received May 17, 1993; Accepted July 15, 1993)  相似文献   

6.
Seven spontaneous Saccharomyces cerevisiae mutants that express dominant resistance to 5,5,5-trifluoro-DL-leucine have been characterised at the molecular level. The gene responsible for the resistance was cloned from one of the mutants (FSC2.4). Determination of its nucleotide sequence showed that it was an allele of LEU4 (LEU4-1), the gene that encodes α-isopropyl malate synthase I (α-IPM synthase I), and that the mutation involved a codon deletion localised close to the 3′ end of the LEU4 ORF. Six different point mutations – four transitions and two transversions – were found in the remaining mutants. α-IPM synthase activity was found to be insensitive to feedback inhibition by leucine in five of the strains. In the other two the enzyme was resistant to Zn2+-mediated inactivation by Coenzyme A, a previously postulated control mechanism in energy metabolism; as far as we know, this represents the first direct in vivo evidence for this mechanism. The seven mutations define a region, the R-region, involved in both leucine feedback inhibition and in Zn2+-mediated inactivation by CoA. Deletion experiments involving the R-region showed that it is also necessary for enzyme activity. Received: 30 September 1998 / Accepted: 20 October 1998  相似文献   

7.
Citrate synthase, an essential enzyme of the tricarboxylic acid cycle in mitochondria, was purified from acetate-grown Candida tropicalis. Results from SDS-PAGE and gel filtration showed that this enzyme was a dimer composed of 45-kDa subunits. A citrate synthase cDNA fragment was amplified by the 5′-RACE method. Nucleotide sequence analysis of this cDNA fragment revealed that the deduced amino acid sequence contained an extended leader sequence which is suggested to be a mitochondrial targeting signal, as judged from helical wheel analysis. Using this cDNA probe, one genomic citrate synthase clone was isolated from a yeast λEMBL3 library. The nucleotide sequence of the gene encoding C. tropicalis citrate synthase, CtCIT, revealed the presence of a 79-bp intron in the N-terminal region. Sequences essential as yeast splicing motifs were present in this intron. When the CtCIT gene including its intron was introduced into Saccharomyces cerevisiae using the promoter UPR-ICL, citrate synthase activity was highly induced, which strongly indicated that this intron was correctly spliced in S. cerevisiae. Received: 20 November 1996 / Accepted: 25 February 1997  相似文献   

8.
The orotidine-5′-phosphate decarboxylase gene of Saccharomyces exiguus Yp74L-3 was cloned as a DNA fragment complementing a ura4 mutation of this yeast. The coding region of the gene is 807 bp in length, and represents 68.7% similarity to the corresponding gene of S. cerevisiae (URA3). The cloned URA4 gene was shown to be located on the 790-kbp Chromosome (chr) VIII of S. exiguus Yp74L-3. The neighbor-joining phylogenetic tree based on the orotidine-5′-phosphate decarboxylase coding sequences indicates that S. exiguus Yp74L-3 is closely related to Kluyveromyces yeasts, as well as to a S. cerevisiae laboratory strain. Received: 4 February 2000 / Accepted: 3 July 2000  相似文献   

9.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

10.
Summary An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2 ) to Leu+ at a frequency of 2.15 × 103 transformants per pg DNA, and transformed C. albicans SGY-243 (ura3) to Ura+ at a frequency of 1.91 × 103 transformants per g DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5TTTTATGTTTT3) which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 by from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes. A sub-fragment (494 bp) containing the 5S rRNA gene (but not the region containing the ARS cores) hybridized to genomic DNAs from a number of yeast species, including S. cerevisiae, C. tropicalis, C. pseudotropicalis, C. parapsilosis, C. kruseii, C. (Torulopsis) glabrata and Neurospora crassa. The 709-bp ARS element (but not the 5S rRNA gene) was necessary for high-frequency transformation and autonomous plasmid replication in both S. cerevisiae and C. albicans.EMBL/GenBank database accession number: X16634 (5S rRNA)  相似文献   

11.
Summary To study the mechanism of initiation of eukaryotic chromosomal replication, we examined protein factors interacting with the ARS1 region located near the centromere of chromosome IV in Saccharomyces cerevisiae. Using the gel shift assay, we found protein factor(s) which specifically bound to the T-rich strand of the region containing the core consensus and its flanking sequences in ARS1, but not to the opposite strand. We designated this factor ATS (ARS1, T-rich strand-binding factor(s)). Similar specific complexes were also detected with oligonucleotide probes specific for the H4 or C2G1 ARS. As we have previously identified another binding factor, we conclude that at least two factors bind to the single-stranded ARS1 sequence.  相似文献   

12.
Summary A DNA sequence has been isolated from Schizosaccharomyces pombe which promotes high frequency transformation of plasmids in the same organism. It is closely linked to the DNA ligase gene CDC17 and has therefore been named ARS17 although in structure it differs substantially from ARS elements in Saccharomyces cerevisiae. ARS17 spans some 1.8 kb of DNA and deletion of any part of this region affects activity. Moreover, there does not appear to be any short sequence which is, by itself, sufficient for high frequency transformation. ARS17 lies between and partly overlaps two divergently transcribed genes and it is extremely AT rich. It lacks the consensus sequence found in S. cerevisiae ARSs and it has no ARS activity in S. cerevisiae.  相似文献   

13.
The linear plasmid pCLU1 from the yeast Kluyveromyces lactis normally replicates in the cytoplasm, with the aid of the helper linear plasmid pGKL2, using terminal protein (TP) as a primer. However, it relocates to the nucleus when selection is applied for the expression of a plasmid-borne nuclear marker. Migration to the nucleus occurred in K. lactis at a frequency of about 10−3/cell ten or more times higher than the rate observed in Saccharomyces cerevisiae. The nuclear plasmids existed only in a circularized form in K. lactis, while in S. cerevisiae a telomere-associated linear form is also found. Sequence analysis showed that circularization in K. lactis was caused by non-homologous recombination between the inverted terminal repeat (ITR) at the ends of the linear form and non-specific internal target sites in pCLU1. No sequence similarity existed among the junction sites, indicating that the free ITR end plays a crucial role in circularization. In S. cerevisiae, circular plasmids were generated not only by non-homologous recombination, but also by homologous recombination between short direct repeats within pCLU1. Circularization via the ITR end was observed independently of RAD52 activity. Sequences highly homologous to ARS core elements, 5′-ATTTATTGTTTT-3′ for K. lactis and 5′-(A/T)TTTAT(T/G)TTT(A/T)-3′ for S. cerevisiae, were detected at multiple sites in the nuclear forms of the plasmids. Received: 25 October 1999 / Accepted: 13 March 2000  相似文献   

14.
Summary An EcoRI 2.7 kbp fragment from Chlorella ellipsoidea chloroplast DNA (cpDNA) cloned in YIp5 was shown to promote autonomous replication in Saccharomyces cerevisiae. The fragment was localized in the small single copy region close to the inverted repeat. The ARS activity (autonomously replicating sequences in yeast) was found to be confined within a subclone of a ca. 300 bp HindIII fragment. Sequence analysis of this fragment revealed its high AT content and the presence of several direct and inverted repeats and a few elements that were related to the yeast ARS consensus sequence. Electron microscopic studies revealed that this sequence did not coincide with the primary replication origin of chloroplast DNA. The functioning of this sequence as a possible origin of plasmid replication in vivo is discussed. This is the first report on Chlorella cpDNA sequence. re]19850821 rv]19851211 ac]19851216  相似文献   

15.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

16.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

17.
《FEBS letters》1986,203(2):285-288
A peptide, termed αse pheromone, was isolated as a mating pheromone from culture filtrate of mating type a cells of Saccharomyces exiguus. The peptide showed both agglutinability-inducing activity to a cells of S. cerevisiae and shmoo-inducing action to a cells of S. cerevisiae, S. kluyveri and S. exiguus. The amino acid sequence of αse pheromone was determined as H-Trp-His-Trp-Leu-Arg-Leu-Ser-Tyr-Gly-Gln-Pro-Ile-Tyr-OH by mass spectrometry, sequence analysis and enzymatic digestion.  相似文献   

18.
Summary Gene conversion of large DNA heterologous fragments has been shown to take place efficiently in Saccharomyces cerevisiae. It has been found that a 2.6 kb LEU2 DNA fragment in a multicopy plasmid was replaced by a 3.1 kb PG11 chromosomal DNA fragment, when both fragments were flanked by homologous DNA regions. Gene conversion was asymmetric in a total of 481 recombinants analyzed. In contrast, truncated PG11 or LEU2 genes in multicopy plasmids, gave no recombinants that restored a complete plasmid copy of these genes in a total of 242 recombinants studied, confirming that a conversion tract is disrupted by a heterologous region. The asymmetry of the events detected suggest that gene conversion of large DNA heterologies involves a process whereby a gap first covers one heterologous fragment and then this is followed by new DNA synthesis using the other heterologous fragment as a template. Therefore, it is likely that large DNA heterologies are converted by a double-strand gap repair mechanism.  相似文献   

19.
In order to maximize the glucoamylase production by recombinant Saccharomyces cerevisiae in batch culture, first a temperature-controlled expression system for a foreign gene in S. cerevisiae was constructed. A temperature-sensitive pho80 mutant of S. cerevisiae for the PHO regulatory system, YKU131, was used for this purpose. A DNA fragment bearing the promoter of the PHO84 gene, which encodes an inorganic phosphate (Pi) transporter of S. cerevisiae and is derepressed by Pi starvation, was used as promoter. The glucoamylase gene connected with the PHO84 promoter was ligated into a YEp13 vector, designated pKU122. When the temperature-sensitive pho80 ts mutant harboring the plasmid pKU122 is cultivated at a lower temperature, the expression of glucoamylase gene is repressed, but at a higher temperature it is expressed. Next the effect of temperature on the specific growth rate, μ, and specific production rate, ρ, was investigated. Maximum values of ρ and ρ at various temperatures were at 30°C and 34°C, respectively. The optimal cultivation temperature strategy for maximum production of glucoamylase by this recombinant strain in batch culture was then determined by the Maximum principle using the relationships of μ and ρ to the cultivation temperature. Finally, the optimal strategy was experimentally realized by changing the cultivation temperature from Tμ (30°C) to Tρ (34°C) at the switching time, ts. Received 18 September 1997/ Accepted in revised form 07 January 1998  相似文献   

20.
Summary A HeLa DNA fragment, which may function as an anchorage point to the nuclear matrix for human chromosomes 1 and 2, also functions as an autonomously replicating sequence (ARS) in the yeast Saccharomyces cerevisiae. In the present report we show that this DNA fragment contains both bent DNA and an A-T rich region which appear to be associated with the ARS function. More interestingly, DNA sequence analysis shows that the spatial distribution of these features is strikingly similar to that found in the yeast ARS1 element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号