首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence-based map of a part of the rhesus macaque major histocompatibility complex (MHC) extended class II region is presented. The sequenced region encompasses 67,401 bp and contains the SACM2L, RING1, FABGL and KE4 genes, as well as the HTATSF1-like and ZNF-like pseudogenes. Similar to human, but different from rat and mouse, no class I genes are found in the SACM2L- RING1 interval. The rhesus macaque extended MHC class II region shows a high degree of conservation of exonic as well as intronic and intergenic sequences compared with the respective human region. It is concluded that this particular genomic organization of the extended class II region-i.e., the absence of class I genes and the presence of the HTATSF1-like and ZNF-like pseudogenes-can be traced back to a common ancestor of humans and rhesus macaques about 23 million years ago.  相似文献   

2.
Gene conversion and balancing selection have been invoked to explain the ubiquitous diversity of the antigen-presenting proteins encoded in the vertebrate major histocompatibility complex (MHC). In the present study, direct evidence for over-dominant selection promoting MHC diversity in primates is provided by the observation that, in a large free-ranging population of rhesus macaques, males heterozygous at MHC class II locus Mamu-DQB1 sired significantly more offspring than homozygotes (the male-specific selection coefficient s equals 0.34). This heterozygote advantage appeared to be independent of the actual male Mamu-DQB1 genotype. No similar effect emerged for a captive group of monkeys of similar genetic background but under veterinary care.  相似文献   

3.
Ren L  Yang Z  Wang T  Sun Y  Guo Y  Zhang Z  Fei J  Bao Y  Qin T  Wang J  Huang Y  Hu X  Zhao Y  Li N 《Immunogenetics》2011,63(10):667-678
In humans, classical MHC class II molecules include DQ, DR, and DP, which are similar in structure but consist of distinct α- and β-chains. The genes encoding these molecules are all located in the MHC class II gene region. In non-mammalian vertebrates such as chickens, only a single class II α-chain gene corresponding to the human DRA has been identified. Here, we report a characterization of the duck MHC class II α-chain (Anpl-DRA) encoding gene, which contains four exons encoding a typical signal peptide, a peptide-binding α1 domain, an immunoglobulin-like α2 domain, and Tm/Cyt, respectively. This gene is present in the duck genome as a single copy and is highly expressed in the spleen. Sequencing of cDNA and genomic DNA of the Anpl-DRA of different duck individuals/strains revealed low levels of genetic polymorphism, especially in the same strain, although most duck individuals have two different alleles. Otherwise, we found that the duck gene is located next to class II β genes, which is the same as in humans but different from the situation in chickens.  相似文献   

4.
5.
Characterization of a divergent non-classical MHC class I gene in sharks   总被引:1,自引:0,他引:1  
Sharks are the most ancient group of vertebrates known to possess members of the major histocompatibility complex (MHC) gene family. For this reason, sharks provide a unique opportunity to gain insight into the evolution of the vertebrate immune system through comparative analysis. Two genes encoding proteins related to the MHC class I gene family were isolated from splenic cDNA derived from spiny dogfish shark ( Squalus acanthias). The genes have been designated MhcSqac-UAA*01 and MhcSqac-UAA*NC1. Comparative analysis demonstrates that the Sqac-UAA*01 protein sequence clusters with classical MHC class I of several shark species and has structural elements common to most classical MHC class I molecules. In contrast, Sqac-UAA*NC1 is highly divergent from all vertebrate classical MHC class I proteins, including the Sqac-UAA *01 sequence and those of other shark species. Although Sqac-UAA*NC1 is clearly related to the MHC class I gene family, no orthologous genes from other species were identified due to the high degree of sequence divergence. In fact, the Sqac NC1 protein sequence is the most divergent MHC class-I-like protein identified thus far in any shark species. This high degree of divergence is similar in magnitude to some of the MHC class-I-related genes found in mammals, such as MICA or CD1. These data support the existence of a class of highly divergent non-classical MHC class I genes in the most primitive vertebrates known to possess homologues of the MHC and other components of the adaptive immune system.  相似文献   

6.
In contrast to mammals, the evolution of MHC genes in birds appears to be characterized by high rates of gene duplication and concerted evolution. To further our understanding of the evolution of passerine MHC genes, we have isolated class II B sequences from two species of New Zealand robins, the South Island robin (Petroica australis australis), and the endangered Chatham Island black robin (Petroica traversi). Using an RT-PCR based approach we isolated four transcribed class II B MHC sequences from the black robin, and eight sequences from the South Island robin. RFLP analysis indicated that all class II B loci were contained within a single linkage group. Analysis of 3-untranslated region sequences enabled putative orthologous loci to be identified in the two species, and indicated that multiple rounds of gene duplication have occurred within the MHC of New Zealand robins. The orthologous relationships are not retained within the coding region of the gene, instead the sequences group within species. A number of putative gene conversion events were identified across the length of our sequences that may account for this. Exon 2 sequences are highly diverse and appear to have diverged under balancing selection. It is also possible that gene conversion involving short stretches of sequence within exon 2 adds to this diversity. Our study is the first report of putative orthologous MHC loci in passerines, and provides further evidence for the importance of gene duplication and gene conversion in the evolution of the passerine MHC.Nucleotide sequence data reported in this paper are available in the GenBank database under the accession numbers AY258333–AY258335, AY428561–AY428570, and AY530534–AY530535  相似文献   

7.
We characterized the MHC-related 1 ( MR1) locus in two nonhuman primates species, Pongo pygmaeus and Pan troglodytes. MR1 cDNA sequences encoding several isoforms generated through alternative splicing were observed in both species. Amino acid alignment between the five species in which MR1 has been characterized to date - human, chimpanzee, orangutan, mouse, and rat - reveals a very high degree of conservation specially in the alpha1 and alpha2 domains of the molecule. The main differences concentrate in the transmembrane and cytoplasmic domains. In the three primates species there is a lysine residue inside the putative transmembrane domain which is not present in rodents. Furthermore, the MR1 cytoplasmic region is longer in rodents, with a conserved serine-containing motif that could be involved in endocytosis; remarkably, this motif is absent in the three primate species. We also describe the presence in the chimpanzee of a sequence homologous to the MR1P1 pseudogene previously found in humans.  相似文献   

8.
The nicotinic acetylcholine receptor (nAChR) is the autoantigen in seropositive myasthenia gravis (MG), a T-cell-dependent B-cell-mediated autoimmune disease. The nAChR is a pentameric transmembrane receptor comprising chains. During early postnatal development the nAChR chain is replaced by the nAChR chain. We tested the myasthenogenicity in experimental autoimmune myasthenia gravis (EAMG) of the native nAChR derived from the electric ray Torpedo californica (T-nAChR) in various inbred and MHC -congenic rat strains. Differences in the disease course emerged dependent on the MHC haplotype and non-MHC genes. Interestingly, no tested rat strain was completely resistant to EAMG, but there were strong differences in disease severity mainly depending on the MHC haplotype. In the LEW non-MHC genome, the B-cell response and the severity of EAMG were dependent on the expressed MHC haplotype. This study underscores the influence of genetic factors on disease severity, disease course and on the degree of the emerging antibody responses in EAMG.  相似文献   

9.
We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.  相似文献   

10.
Summary We have determined the various haplotypic combinations between alleles as well as restriction fragment length polymorphisms of two linked genetic markers, albumin and vitamin D-binding protein or group-specific component, in a number of Asian-Pacific populations. Using the partial maximum likelihood method, we constructed a phylogenetic network from the haplotype frequencies to assess relationships among the populations sampled. No systematic linkage disequilibrium was detected between most of the combinations, suggesting a lack of operation of any selection pressure at the two loci. The phylogenetic analysis confirmed the known interrelationships among various populations in the Asian-Pacific region. The Australian aborigines clustered closely with the non-Austronesian-speaking highlanders from Papua New Guinea, as expected. Similarly, the Austronesian-speaking Polynesians, Micronesians, and the Southeast Asians branched off together as a separate group. The position of the Austronesian-speaking Tolais from New Britain with respect to other populations from the Southwest Pacific was anomalous. The Tolais revealed a strong affinity with the Australian aborigines, which is inexplicable. The populations from China formed a tight cluster with other populations from the Asian-Pacific region. Genetic interrelationships of these populations with the white Australians were remote, which is in accordance with the known affinities of various human racial groups.  相似文献   

11.
The promoters of genes of the major histocompatibility complex vary not only because of linkage disequilibrium with their coding sequences but also, we argue, because of natural selection that acts particularly strongly on MHC II gene promoters. Thus, the promoter of H2Eb varies more than that of H2K, to an extent that cannot be accounted for by coding variation, and the same applies to HLA.DRB1 in comparison with H2D. We discuss how transduction by lentivirus vectors followed by adoptive transfer of monoclonal T cells could be used to test the functional activity of variant mouse promoters in vivo, and how homologous recombination in suitable cell lines might provide a short cut to obtaining promoter knock-ins.  相似文献   

12.
13.
A juvenile rhesus macaque presented with atrophy of the musculature of its left leg. Physical examination localized the problem to the coxofemoral joint. Radiography revealed changes consistent with Legg-Calvé-Perthes (LCP) disease. Femoral head ostectomy was performed, and the femoral head was submitted for histologic examination, results of which confirmed a diagnosis of LCP.  相似文献   

14.
Wan QH  Zhang P  Ni XW  Wu HL  Chen YY  Kuang YY  Ge YF  Fang SG 《PloS one》2011,6(1):e14518
The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ~ DRB1 ~ DRB3 ~ DQA1 ~ DQB2 (H1) and DRA1*02 ~ DRB2 ~ DRB4 ~ DQA2 ~ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.  相似文献   

15.
16.
Genetic exchange of sequence information between members of a gene family, generally denoted gene conversion, causes a phenomenon called concerted evolution meaning that non-allelic genes do not evolve independently. The possible significance of this phenomenon in the evolution of major histocompatibility complex (MHC) class II genes has been investigated in the present study. The results of a phylogenetic analysis of human, mouse, bovine, and chicken class II sequences were consistent with the occurrence of gene conversion between polymorphic class II genes (i. e. DPB, DQB, and DRB) but not between these genes and the monomorphic DOB gene or between class II genes. Gene conversion between polymorphic genes appears to be restricted to a gene segment between approximately nucleotide positions 94–286 in the first domain exon. Due to this genetic exchange, there is a greater interlocus similarity both at the DNA and protein level in this region than in the rest of the sequence. The region encodes a functionally important part of the class II molecule including more than half of the -chain residues of the antigen binding site and the residues in the helix assumed to form contact with the T-cell receptor. The observed similarity in the -helical region of class II molecules may be functionally significant for the utilization of the T-cell repertoire for antigen recognition in the immune system.  相似文献   

17.
The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.  相似文献   

18.
We have studied levels and distribution of genetic variation in nine isolated populations of Brown trout in NW Spain. In the present study, we have tried to test the importance of preservation of genetic variability for the survival of a set of isolated Brown trout (Salmo trutta) populations from the same river drainage. We screened genetic variation in three different markers, mitochondrial, microsatellites and Major Histocompatibility Complex (MHC), presumed to be under different selective pressures. Overall, genetic diversity varied considerably across populations and the distribution of genetic variation was similar at MHC and microsatellites; highly polymorphic populations at the microsatellite loci were also highly polymorphic at the MHC. We also observed high levels of differentiation among populations. Although we found evidence suggesting that balancing selection has influenced the long term evolution of the MHC, genetic drift seems to have eroded the effect of selection, becoming the predominant evolutionary force shaping genetic variation in some of the smaller populations. Despite current lack of variation at the MHC, these small populations seem to have remained viable for a long time.  相似文献   

19.
Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.  相似文献   

20.
Genetic variation is often lower within island populations, however islands may also harbor divergent genetic variation. The likelihood that insular populations are genetically diverse or divergent should be influenced by island size and isolation. We tested this assumption by comparing patterns of genetic variation across all major island song sparrow populations along the Pacific North American coast. Allelic richness was moderately lowered even on islands which are close to large, potential sources. The most significant differences in allelic richness occurred on very small or highly remote islands. Gene diversity was significantly lower only on remote or very small islands. We found that island populations contribute to regional genetic variation through both the amount of genetic variation and the uniqueness of that variation. The partitioning of this contribution was associated with the size and isolation of the island populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号