首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC50 values obtained for both cell lines using the MTT and trypan blue exclusion assays 5 h after BPC treatment were lower than 8.0 μM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.  相似文献   

2.
In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity.  相似文献   

3.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

4.
Staurosporine (STS) induces apoptosis in various cell lines. We report in this study that primary cultured mouse hepatocytes are less sensitive to STS compared with Jurkat cells and Huh-7 cells. In contrast to the cell lines, no apparent release of cytochrome c or loss of mitochondrial transmembrane potential was detected in primary hepatocytes undergoing STS-induced apoptosis. Caspase-3 was activated in primary hepatocytes by STS treatment, but caspase-9 and -12 were not activated, and caspase-3 activation is not dependent on caspase-8. These findings point to a novel pathway for caspase-3 activation by STS in primary hepatocytes. Pretreatment with caspase inhibitor converted STS-induced apoptosis of hepatocytes to necrotic cell death without significantly changing total cell death. Thus STS causes hepatocytes to commit to death upstream of the activation of caspases. We also demonstrated that STS dramatically sensitized primary hepatocytes to tumor necrosis factor-alpha-induced apoptosis. STS activated I kappa B kinase and nuclear factor-kappa B (NF-kappa B) nuclear translocation and DNA binding but inhibited transactivation of I kappa B-alpha, inducible nitric oxide synthase, and inhibitor of apoptosis protein-1 in hepatocytes and NF-kappa B reporter in transfected Huh-7 cells.  相似文献   

5.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

6.
Previous studies by our laboratory have reported that the T cell receptor (TCR) TCR/CD3 complex could mediate activation as well as apoptosis of T lymphocytes. Two tyrosine residues in the ITAM (immuno-receptor tyrosine-based activation motifs) of CD3 epsilon were required for apoptosis signalling of Jurkat T lymphocytes. Stable cell lines TJK and T3JK produced from CD8(-) Jurkat T lymphocytes by transfection with wild-type and mutant CD8 epsilon (fusion of the extracellular and transmembrane domains of human CD8 alpha to the intracellular domain of mouse CD3 epsilon), were used with CD8(-) Jurkat T lymphocytes for studying the role of single intact CD3 epsilon. 5-Fluorouracil (5-FU), a chemotherapeutic drug can induce cell death of many tumour cell lines. In the present experiments, we examined the expression of caspase-3, p53 and Bid in the three cell lines induced by 5-FU and/or anti-CD8 antibody. We found high expression of p53 during activation-induced cell death of TJK cells mediated by anti-CD8 antibody and apoptosis of TJK and T3JK induced by 5-FU, implicating p53 involvement in apoptosis of leukemia cells induced by anti-CD8 antibody and 5-FU. We also detected the active form of caspase-3 and Bid in apoptotic leukemia cells after treatment with 5-FU and/or anti-CD8 antibody, indicating that the drug and antibody induced cell death through caspase-3 and the signal pathway may involve the Bcl-2 protein family. Our results showed that combined treatment with 5-FU and anti-CD8 antibody could enhance the rate of apoptosis induced by 5-FU or anti-CD8 antibody through increased expression of p53 and by promoting activation of caspase-3 and Bid. This suggests that the combination of 5-FU and anti-CD8 antibody may play an important role in inducing apoptosis of leukemia cells.  相似文献   

7.
The caspases are known to play a pivotal role in the triggering and execution of apoptosis in virtually all cell types. Because inappropriate apoptosis is a prominent feature of many human diseases, the caspases are attractive targets for therapeutic intervention. In the present study we investigated whether Jurkat T lymphocytes rescued from Fas-induced cell death through the inhibition of caspases are functional. Here we show that the pan-caspase, tripeptide inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Ome) fluoromethylketone (z-VAD-FMK), inhibited the activation of caspase-2, -3, -7, and -8, and subsequently apoptosis in Jurkat T lymphocytes induced by agonistic anti-Fas. The apoptotic signals induced by the cross-linking of the Fas antigen have a relatively long half-life, as z-VAD-FMK had to be continuously present in the culture medium for 72 h after Fas stimulation in order to maintain cell survival. After 72 h, the z-VAD-FMK-rescued cells proliferate normally and responded to activation induced cell death after phytohaemaglutinin treatment, and readily undergo apoptosis when restimulated with agonistic Fas antibodies. Taken together, our results demonstrate that Jurkat T cells rescued from Fas-mediated cell death through the inhibition of caspases are functional.  相似文献   

8.
Different roles of spermine in glucocorticoid- and Fas-induced apoptosis   总被引:2,自引:0,他引:2  
Two experimental systems representative of the mitochondrial and death receptor apoptotic pathways are the dexamethasone-induced programmed cell death in mouse thymocytes and the antibody-mediated cross-ligation of the Fas receptor in the human leukemic T-cell line Jurkat, respectively. In both cell systems, caspase-9, -8, and -3 were activated upon induction of apoptosis and a sub-G(1) peak appeared as a sign of ongoing DNA fragmentation. Addition of 1 mM spermine together with dexamethasone inhibited caspase activation and the appearance of the sub-G(1) peak in mouse thymocytes. In contrast, Fas-induced cell death was totally unaffected by spermine addition. Spermine addition significantly elevated the spermine concentration in both thymocytes and Jurkat cells. Thus, spermine per se did not inhibit the caspases but rather their activation. The fact that spermine inhibited caspase activation only in the thymocytes implies that spermine inhibited dexamethasone-induced apoptosis upstream of caspase-9 activation.  相似文献   

9.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

10.
Cycloheximide (CHX) can contribute to apoptotic processes, either in conjunction with another agent (e.g. tumor necrosis factor-alpha) or on its own. However, the basis of this CHX-induced apoptosis has not been clearly established. In this study, the molecular mechanisms of CHX-induced cell death were examined in two different human T-cell lines. In T-cells undergoing CHX-induced apoptosis (Jurkat), but not in T-cells resistant to the effects of CHX (CEM C7), caspase-8 and caspase-3 were activated. However, the Fas ligand was not expressed in Jurkat cells either before or after treatment with CHX, suggesting that the activation of these caspases does not involve the Fas receptor. To determine whether CHX-induced apoptosis was mediated by a Fas-associated death domain (FADD)-dependent mechanism, a FADD-DN protein was expressed in cells prior to CHX treatment. Its expression effectively inhibited CHX-induced cell death, suggesting that CHX-mediated apoptosis primarily involves a FADD-dependent mechanism. Since CHX treatment did not result in the induction of Fas or FasL, and neutralizing anti-Fas and anti-tumor necrosis factor receptor-1 antibodies did not block CHX-mediated apoptosis, these results may also indicate that FADD functions in a receptor-independent manner. Surprisingly, death effector filaments containing FADD and caspase-8 were observed during CHX treatment of Jurkat, Jurkat-FADD-DN, and CEM C7 cells, suggesting that their formation may be necessary, but not sufficient, for cell death.  相似文献   

11.
The activation of caspases represents a critical step in the pathways leading to the biochemical and morphological changes that underlie apoptosis. Multiple pathways leading to caspase activation appear to exist and vary depending on the death-inducing stimulus. We demonstrate that the activation of caspase-3, in Jurkat cells stimulated to undergo apoptosis by a Fas-independent pathway, is catalyzed by caspase-6. Caspase-6 was found to co-purify with caspase-3 as part of a multiprotein activation complex from extracts of camptothecin-treated Jurkat cells. A biochemical analysis of the protein constituents of the activation complex showed that Hsp60 was also present. Furthermore, an interaction between Hsp60 and caspase-3 could be demonstrated by co-immunoprecipitation experiments using HeLa as well as Jurkat cell extracts. Using a reconstituted in vitro system, Hsp60 was able to substantially accelerate the maturation of procaspase-3 by different upstream activator caspases and this effect was dependent on ATP hydrolysis. We propose that the ATP-dependent 'foldase' activity of Hsp60 improves the vulnerability of pro-caspase-3 to proteolytic maturation by upstream caspases and that this represents an important regulatory event in apoptotic cell death.  相似文献   

12.
It is now well established that the caspases, a family of cysteine proteases, play a key role in apoptosis. Although overexpressing each of the caspases in cells triggered apoptosis, the precise role and contribution of individual caspases are still unclear. Caspase-1, the first caspase discovered, was initially implicated in mammalian apoptosis because of its similarity to the gene productced-3.Using whole cells as well as anin vitrosystem to study apoptosis, the role of caspase-1 in Fas-mediated apoptosis in Jurkat T cells was examined in greater detail. Using various peptide-based caspase inhibitors, our results showed thatN-acetyl-Tyr-Val-Ala-Asp chloromethyl ketone and benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone efficiently blocked Fas-mediated apoptosis in Jurkat T cells, whereasN-acetyl-Tyr-Val-Ala-Asp aldehyde, which is more specific for caspase-1, had little effect. Cell lysates derived from anti-Fas-stimulated cells, which readily induced apoptotic nuclei morphology and DNA fragmentation in isolated thymocyte nuclei, had no caspase-1 activity using proIL-1β as a substrate. Time-course studies showed no caspase-1 activity during the activation of apoptosis in Jurkat cells by agonistic Fas antibodies. Furthermore, no pro-caspase-1 protein nor activated form of the protein was detected in normal or apoptotic Jurkat cells. In contrast, both caspase-2 and caspase-3 were readily detected as proenzymes in control cells and their activated forms were detected in apoptotic cells. Incubation of recombinant active caspase-1 with control cell lysates did not activate the apoptotic cascade as shown by the lack of detectable apoptotic nuclei promoting activity using isolated nuclei as substrate. However, under similar conditions proIL-1β was readily processed into the mature cytokine, indicating that the recombinant caspase-1 remained active in the presence of control cell lysates. Taken together our results demonstrate that caspase-1 is not required for the induction of apoptosis in Jurkat T cells mediated by the Fas antigen.  相似文献   

13.
Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.  相似文献   

14.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-β- -arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1of the cell cycle and an accumulation of a population in the sub-G1phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measuredin vitroby enhanced metabolization of a fluorescence substrate andin vivoby cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cδ. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

15.
To investigate the early event of apoptosis, we monitored the morphological changes in the early stage of Fas-induced apoptosis in the human T-cell lymphoma cell line Jurkat, using confocal microscopy. Morphological changes in the nuclei were observed from 30min after stimulation, and preceded the changes in the cytoskeleton. This kind of change was enhanced in the presence of EGTA but decreased in the presence of dihydrocytochalasin B, without any changes in caspase-3 activation. During the changes in shape of the cells, the actin cytoskeleton collapsed and shrank in the center. Even though nuclei also changed their shapes in apoptotic cells, they were partially TUNEL-negative, suggesting that they were not yet damaged at the DNA level. Our results suggest that, in the process of apoptosis in Jurkat cells, cell nuclei and cytoskeleton are changed first, then membrane blebbing and caspase-3 activation occur, and fragmentation of chromosomal DNA is last.  相似文献   

16.
17.
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) synthesizes poly(ADP-ribose) in response to DNA strand breaks. During almost all forms of apoptosis, PARP is cleaved by caspases, suggesting the crucial role of its inactivation. A few studies have also reported a stimulation of PARP during apoptosis. However, the role of PARP stimulation and cleavage during this cell death process remains poorly understood. Here, we measured the stimulation of endogenous poly(ADP-ribose) synthesis during VP-16-induced apoptosis in HL60 cells and found that PARP was cleaved by caspases at the time of its poly(ADP-ribosyl)ation. In vitro experiments showed that PARP cleavage by caspase-7, but not by caspase-3, was stimulated by its automodification by long and branched poly(ADP-ribose). Consistently, caspase-7 exhibited an affinity for poly(ADP-ribose), whereas caspase-3 did not. In addition, caspase-7 was activated and accumulated in the nucleus of HL60 cells in response to the VP-16 treatment. Furthermore, caspase-7 activation was concommitant with PARP cleavage in the caspase-3-deficient cell line MCF-7 in response to staurosporine treatment. These results strongly suggest that, in vivo, it is caspase-7 that is responsible for PARP cleavage and that poly(ADP-ribosyl)ation of PARP accelerates its proteolysis. Cleavage of the active form of caspase substrates could be a general feature of the apoptotic process, ensuring the rapid inactivation of stress signaling proteins.  相似文献   

18.
Hypericin (HYP) is a photosensitizing pigment from Hypericum perforatum that displays cytotoxic effects in neoplastic cell lines. Therefore, HYP is presently under consideration as a new anticancer drug in photodynamic therapy. Here, we investigated the mechanism of action of HYP photo-induced apoptosis of Jurkat cells compared to the cytostatic drug paclitaxel (PXL). Both photoactivated HYP and PXL similarly increased the activity of caspase-8 and caspase-3, and drug-induced apoptosis of Jurkat cells was completely blocked by inhibitors of caspase-8 (Z-IETD-FMK) and caspase-3 (Z-DEVD-FMK). The involvement of death receptors was analyzed using neutralizing monoclonal antibodies against Fas (SM1/23), FasL (NOK-2) and TNF-R1 (MAB225), and a polyclonal rabbit anti-human TNF-related apoptosis-inducing ligand (TRAIL) antiserum. TRAIL antibody blocked TRAIL-induced and HYP photo-induced, but not PXL-induced apoptosis of Jurkat cells. In contrast, PXL-induced, but not HYP-induced apoptosis was blocked by the SM1/23 and NOK-2 antibodies. Anti-TNF-R1 antibody had no effect. These findings suggest that HYP photo-induced apoptosis of Jurkat cells is mediated in part by the TRAIL/TRAIL-receptor system and subsequent activation of upstream caspases.  相似文献   

19.
To define the role of caspase-3 in H2O2-induced apoptosis, we introduced caspase-3 cDNA into MCF-7 breast carcinoma cells that otherwise lack caspase-3 expression. H2O2 treatment induced DNA fragmentation and nuclear condensation in the caspase-3-expressing cells, but not in the caspase-3-deficient cells. This indicated that caspase-3 is essential for nuclear events. However, H2O2 induced an externalization of membrane phosphatidylserine (PS) and cell death regardless of caspase-3 expression. These events were not suppressed by Ac-DEVD-CHO and Z-VAD-fmk, which inhibit DEVD-specific caspases and a broad spectrum of caspases, respectively. In Jurkat T cells, these inhibitors abolished H2O2-induced PS relocalization, but not cell death. Therefore, caspases appear to be dispensable for lethality by H2O2, but required for PS redistribution in a cell-type-specific manner.  相似文献   

20.
Flunarizine is a Ca2+ channel blocker that can be either cytoprotective or cytotoxic, depending on the cell type that is being examined. We show here that flunarizine was cytotoxic for Jurkat T-leukemia cells, as well as for other hematological maligancies, but not for breast or colon carcinoma cells. Treatment of Jurkat cells with flunarizine resulted in caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and laddering of DNA fragments, all of which are hallmarks of apoptosis. Flunarizine-induced DNA fragmentation was inhibited by the caspase-3 inhibitor z-DEVD-fmk, the caspase-8/caspase-10 inhibitor z-IETD-fmk, and the caspase-10 inhibitor z-AEVD-fmk, but was not reduced in caspase-8-deficient Jurkat cells, indicating the involvement of caspase-10 upstream of caspase-3 activation. Interestingly, FADD recruitment to a death receptor was not involved since flunarizine caused DNA fragmentation in FADD-deficient Jurkat cells. Flunarizine treatment of Jurkat cells also resulted in reactive oxygen species production, dissipation of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, and caspase-9 activation, although none of these events were necessary for apoptosis induction. Collectively, these findings indicate that flunarizine triggers apoptosis in Jurkat cells via FADD-independent activation of caspase-10. Flunarizine warrants further investigation as a potential anti-cancer agent for the treatment of hematological malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号