首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis.  相似文献   

2.
The N-unregulated white rot fungus Bjerkandera sp. strain BOS55 was cultured in 1 liter of peptone-yeast extract medium to produce lignin peroxidase (LiP). During the LiP assay, the oxidation of veratryl alcohol to veratraldehyde was inhibited due to tyrosine present in the peptone and the yeast extract.  相似文献   

3.
The white-rot fungusBjerkandera adusta produces volatile chlorinated phenyl compounds. The main compounds identified were 3-chloro-4-methoxybenzaldehyde (3-chloro-p-anisaldehyde), 3-chloro-4-methoxybenzyl alcohol (3-chloro-p-anisyl alcohol), 3,5-dichloro-4-methoxybenzaldehyde (3,5-dichloro-p-anisaldehyde), and 3,5-dichloro, 4-methoxybenzyl alcohol (3,5-dichloro-p-anisyl alcohol).p-Anisaldehyde, veratraldehyde and the corresponding alcohols,p-anisyl alcohol and veratryl alcohol were produced simultaneously. Even with a very low concentration of chloride in the medium (< 10–5 m), chlorinated aromatic compounds were still observed. Addition of bromide to the culture medium led to the production of brominated compounds: 3-bromo-4-methoxybenzaldehyde, 3-bromo-4-methoxybenzyl alcohol, 3,5-dibromo-4-methoxybenzaldehyde and 3-bromo-5-chloro-4-methoxybenzaldehyde. These brominated compounds have not previously been reported as natural products. Although iodo-aromatic compounds were not produced by supplementation of the medium with iodide, isovanillin was found in the culture broth under these conditions. This compound may be formed by substitution of the iodine intermediate by a hydroxyl group on the third carbon of the ring. Diiodomethane or chloroiodomethane were also found. It is the first time that the production of halomethane has been related to the production of halogenated aromatic compounds. All the strains tested have these capabilities.  相似文献   

4.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

5.
(1R,2S)-1-(3'-Chloro-4'-methoxyphenyl)-1,2propanediol (Trametol, 3), a metabolite of the fungus Trametes sp. IVP-F640 and Bjerkandera sp. BOS55, was synthesized by employing Sharpless asymmetric dihydroxylation as the key step. Similarly, the (1R,2S)-isomer of 1-(3',5'-dichloro-4'-methoxyphenyl)-1,2-propanediol (4), another metabolite of Bjerkandera sp. BOS55, was synthesized by asymmetric dihydroxylation.  相似文献   

6.
The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-dependent peroxidase (MnP) production. However, the biobleaching was not affected by the Mn nutrient regimen, ranging from 1,000 (mu)M added Mn to below the detection limit of 0.26 (mu)M Mn in EDTA-extracted pulp medium. The lowest Mn concentration tested was at least several orders of magnitude lower than the K(infm) known for MnP. Consequently, it was concluded that Mn is not required for biobleaching in Bjerkandera sp. strain BOS55. Nonetheless, fast protein liquid chromatography profiles indicated that MnP was the predominant oxidative enzyme produced even under culture conditions in the near absence of manganese. High nitrogen (22 mM N) and exogenous veratryl alcohol (2 mM) repressed biobleaching in Mn-deficient but not in Mn-sufficient culture medium. No correlation was observed between the titers of extracellular peroxidases and the biobleaching. However, the decolorization rate of the polyaromatic dye Poly R-478 was moderately correlated to the biobleaching under a wide range of Mn and N nutrient regimens.  相似文献   

7.
The white rot fungus Bjerkandera sp. strain BOS55 produces veratryl, anisyl, 3-chloroanisyl, and 3,5-dichloroanisyl alcohol and the corresponding aldehydes de novo from glucose. All metabolites are produced simultaneously with the extracellular ligninolytic enzymes and have an important physiological function in the fungal ligninolytic system. Both mono- and dichlorinated anisyl alcohols are distinctly better substrates for the extracellular aryl alcohol oxidases than veratryl alcohol. The aldehydes formed are readily recycled by reduction by washed fungal mycelium, thus creating an extracellular H2O2 production system regulated by intracellular enzymes. Lignin peroxidase does not oxidize the chlorinated anisyl alcohols either in the absence or in the presence of veratryl alcohol. It was therefore concluded that the chlorinated anisyl alcohols are well protected against the fungus's own aggressive ligninolytic enzymes. The relative amounts of veratryl alcohol and the chlorinated anisyl alcohols differ significantly according to the growth conditions, indicating that production of veratryl alcohol and the production of the (chlorinated) anisyl metabolites are independently regulated. We conclude that the chlorinated anisyl metabolites biosynthesized by the white rot fungus Bjerkandera sp. strain BOS55 can be purposefully produced for ecologically significant processes such as lignin degradation.  相似文献   

8.
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAH) are persistent priority pollutants of soil and sediments. The use of white-rot fungi has been proposed as a means of bioremediating PAH-polluted sites. However, higher PAH compounds of low bioavailability in polluted soil are biodegraded slowly. In order to enhance their bioavailability, PAH solubilization, can be increased in water/solvent mixtures. The oxidation of a model PAH compound, anthracene, in the presence of cosolvents by the white-rot fungus, Bjerkandera sp. strain BOS55 was investigated. Acetone and ethanol at 5% were toxic to this fungus when added at the time of inoculation. However, when solvents up to 20% (v/v) were added to 9-day-old cultures, ligninolytic activity as indicated by Poly R-478 dye decolorization and anthracene oxidation was evident for several days. Since 20% solvent was toxic to cells, the oxidation of anthracene can be attributed to extracellular peroxidases, which were shown to tolerate the solvent. Solvent additions of 11%–21% (v/v) acetone or ethanol increased the rate of anthracene bioconversion to anthraquinone in liquid medium by a factor of 2–3 compared to fungal cultures receiving 1%–3% solvent.  相似文献   

10.
The objective of this study was to investigate the enzymatic generation of the Mn(3+) -malonate complex and its application to the process of oxidizing several organic compounds. The experimental set-up consisted of an enzymatic reactor coupled to an ultrafiltration membrane, providing continuous generation of Mn(3+) -malonate from a reaction medium containing versatile peroxidase (an enzyme produced by Bjerkandera adusta strain BOS55), H(2) O(2) , MnSO(4,) and malonate. The effluent of the enzymatic reactor was introduced into a batch-stirred reactor to oxidize three different classes of compounds: an azo dye (Orange II), three natural and synthetic estrogens, and a polycyclic aromatic hydrocarbon (anthracene). The enzymatic reactor provided the Mn(3+) complex under steady-state conditions, and this oxidative species was able to transform the three classes of xenobiotics considerably (90-99%) with negligible loss of activity.  相似文献   

11.
《Journal of biotechnology》1995,39(2):175-179
The degradation pathway of vanillyl and veratryl alcohol by Lentinus edodes extracellular enzymes was studied. In both cases several products of side chain oxidation and aromatic ring cleavage were isolated and characterized. We have observed that the products from veratryl alcohol degradation by Lentinus edodes are quite different from those isolated from incubations with other white-rot fungi which have veraraldehyde as the major product, in fact, this compound is not produced as final metabolite in L. edodes incubations. This behaviour could explain the apparent absence of lignin peroxidase and veratryl alcohol oxidase activities in L. edodes cultures, since such activities are usually measured by monitoring veratraldehyde formation during the veratryl alcohol oxidation; thus, it is suggested that additional assay methods should be developed, with preferably direct observation of aromatic ring oxidation products.  相似文献   

12.
Abstract 3,4-Dimethoxycinnamyl alcohol (I) was actively metabolized by a white-rot fungus Coriolus versicolor in low nitrogen and high oxygen stationary cultures favouring the ligninolytic activity in the fungus. Substrate I was mainly oxidized to veratrylglycerol (III) which was a mixture of erythro and threo forms. Both isomers were degraded by cleavage between Cα and Cβ of the side chain to give veratraldehyde (VI), and (VI) was then reduced to veratryl alcohol (VII). A part of I was also metabolized via 1-(3,4-dimethoxyphenyl)-propane-3-ol (IV) and 1-(3,4-dimethoxyphenyl) propane-1,3-diol (VIII) by the fungus.  相似文献   

13.
A novel enzyme activity was detected in the extracellular fluid of Bjerkandera sp. BOS 55. The purified enzyme could oxidize several compounds, such as Phenol red, 2,6-dimethoxyphenol (DMP), Poly R-478, ABTS and guaiacol, with H2O2 as an electron acceptor. In contrast, veratryl alcohol was not a substrate. This enzyme also had the capacity to oxidize DMP in the absence of H2O2. With some substrates, a strong inhibition of the peroxidative activity by Mn2+ was observed. Phenol red oxidation was inhibited by 84% with only 1 mM of this metal ion. Because DMP oxidation by this enzyme is only slightly inhibited by Mn2+, this substrate should not be used in assays to detect manganese peroxidase. The enzyme is tentatively named 'Manganese-Inhibited Peroxidase'.  相似文献   

14.
The biodegradation of chloronaphthalene (CN) and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri, which can degrade dichlorinated dioxins and non-chlorinated dioxin-like compounds, was investigated. Naphthalene, phenanthrene, 1-chloronaphthalene (1-CN) and 2-chloronaphthalene (2-CN) were metabolized by the fungus to form several oxidized products. Naphthalene and phenanthrene were metabolized to the corresponding hydroxylated and dihydrodihydroxylated metabolites. 2-CN was metabolized to 3-chloro-2-naphtol, 6-chloro-1-naphtol and two other chloronaphtols, CN-dihydrodiols and CN-diols. Significant inhibition of the degradation of these substrates was observed when they were incubated with the cytochrome P-450 monooxygenase inhibitors 1-aminobenzotriazole and piperonyl butoxide. These results suggest that P. lindtneri initially oxidizes these substrates by a cytochrome P-450 monooxygenase.  相似文献   

15.
An intracellular aryl-alcohol dehydrogenase (previously referred to as aryl-aldehyde reductase) was purified from the white-rot fungus Phanerochaete chrysosporium. The enzyme reduced veratraldehyde to veratryl alcohol using NADPH as a cofactor. Other aromatic benzaldehydes were also reduced, but not aromatic ketones. Methoxy-substituted rings were better substrates than hydroxylated ones. The enzyme was also able to reduce a dimeric aldehyde (4-benzyloxy-3-methoxybenzaldehyde). The highest reduction rate was measured when 3,5-dimethoxybenzaldehyde was used as a substrate. On SDS/PAGE the purified enzyme showed one major band with a molecular mass of 47 kDa, whereas gel filtration suggested a molecular mass of 280 kDa. Polyclonal antibodies raised against the gel purified 47-kDa protein were able to immunoprecipitate the aryl-alcohol dehydrogenase indicating that its activity possibly resides entirely in this protein fragment. The pI of the enzyme was 5.2 and it was most active at pH 6.1. The aryl-alcohol dehydrogenase was partially inhibited by typical oxidoreductase inhibitors.  相似文献   

16.
Bjerkandera adusta produced aromatic compounds such as benzaldehyde (bitter almond aroma), benzyl alcohol and benzoic acid from L-phenylalanine (3 g kg–1). Two supports for the fungus, wheat bran (organic support) and Perlite (mineral support), gave optimal production with water contents of 66% and 60%, respectively. Benzyl alcohol (4.53 g kg–1) and benzaldehyde (1.56 g kg–1) were produced after 4 days on wheat bran respectively with 20 and 30 g L-phenylalanine kg–1. Aryl alcohol oxidase activity, which oxidises benzyl alcohol to benzaldehyde, was only detected when the fungus was grown on wheat bran, the support which promotes the most benzaldehyde production. Results are compared with those obtained in submerged liquid cultures.  相似文献   

17.
Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with L-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors ((14)C- and (13)C-labelled L-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that L-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from L-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via beta-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a beta-oxidation degradation intermediate. To our knowledge, this is the first time that a beta-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from L-phenylalanine is proposed.  相似文献   

18.
The white-rot fungus Bjerkandera sp. BOS55 has been suggested as a good alternative for the production of ligninolytic enzymes, specially Manganese peroxidase (MnP), by its potential ability to degrade complex compounds. However, the application of this fungus requires the complete knowledge of the fermentation pattern in submerged cultures, conditions similar to those existing in industrial size reactors. For this purpose, the nutritional and environmental factors enabling high ligninolytic activity were studied. According to the results, under limitation and sufficiency of nitrogen, there is a threshold concentration for nitrogen from which MnP is produced. However, under nitrogen excess, the ligninolytic stage of the fungus was coincident with growth, with no apparent substrate limitation according to existing levels of carbon and nitrogen. Concerning carbon concentration, MnP synthesis took place independently of glucose concentration, this indicating that carbon limitation does not seem to be the triggering factor for MnP secretion. Other two environmental factors were studied: oxygenation and agitation, but no significant effect on MnP production was observed, a quite different aspect from the behaviour of other known fungi like Phanerochaete chrysosporium.  相似文献   

19.
The white-rot basidiomycete Bjerkandera adusta was cultivated in a liquid medium enriched with l-phenylalanine and various phospholipid sources (lecithin, egg yolk and asolectin). Three aromatic metabolites (benzaldehyde, benzyl alcohol and benzoic acid) were produced under these culture conditions. High concentrations of benzaldehyde (404 mg l–1) were obtained when the cultures were supplemented with 10 g lecithin l–1. Benzyl alcohol production was promoted when the strain was grown with 5 or 10 g lecithin l–1. In the absence of or with a low concentration of lecithin (2.5 g l–1), benzoic acid was the major aryl metabolite synthesized. The results presented here indicate that aryl alcohol oxidase, an extracellular enzyme catalyzing the oxidation of benzyl alcohol into benzaldehyde, was maximally detected when significant amounts of benzaldehyde were produced. Aryl alcohol oxidase activity was significantly enhanced in the presence of elevated concentrations of phospholipid sources. Together with lignin peroxidase, methoxylated and hydroxylated aryl metabolites were also synthesized under these culture conditions. The possible involvement of phospholipids in the synthesis of aryl metabolites is discussed. Received: 7 August 1998 / Accepted: 30 November 1998  相似文献   

20.
It has recently been reported that Pleurotus pulmonarius secretes a versatile peroxidase that oxidizes Mn2+, as well as different phenolic and nonphenolic aromatic compounds; this enzyme has also been detected in other Pleurotus species and in Bjerkandera species. During culture production of the enzyme, the activity of the main peak was as high as 1,000 U/liter (measured on the basis of the Mn3+-tartrate formation) but this peak was very ephemeral due to enzyme instability (up to 80% of the activity was lost within 15 h). In culture filtrates inactivation was even faster; all peroxidase activity was lost within a few hours. Using different inhibitor compounds, we found that proteases were not responsible for the decrease in peroxidase activity. Peroxidase instability coincided with an increase in the H2O2 concentration, which reached 200 μM when filtrates were incubated for several hours. It also coincided with the onset of biosynthesis of anisylic compounds and a decrease in the pH of the culture. Anisyl alcohol is the natural substrate of the enzyme aryl-alcohol oxidase, the main source of extracellular H2O2 in Pleurotus cultures, and addition of anisyl alcohol to filtrates containing stable peroxidase activity resulted in rapid inactivation. A decrease in the culture pH could also dramatically affect the stability of the P. pulmonarius peroxidase, as shown by using pH values ranging from 6 to 3.25, which resulted in an increase in the level of inactivation by 10 μM H2O2 from 5 to 80% after 1 h. Moreover, stabilization of the enzyme was observed after addition of catalase, Mn2+, or some phenols or after dialysis of the culture filtrate. We concluded that extracellular H2O2 produced by the fungus during oxidation of aromatic metabolites is responsible for inactivation of the peroxidase and that the enzyme can protect itself in the presence of different reducing substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号