首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.  相似文献   

2.
Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.  相似文献   

3.
Ion fluxes and the production of reactive oxygen species (ROS) are early events that follow elicitor treatment or microbial infection. However, molecular mechanisms for these responses as well as their relationship have been controversial and still largely unknown. We here simultaneously monitored the temporal sequence of initial events at the plasma membrane in suspension-cultured tobacco cells (cell line BY-2) in response to a purified proteinaceous elicitor, cryptogein, which induced hypersensitive cell death. The elicitor induced transient rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) showing two distinct peaks, followed by biphasic (rapid/transient and slow/prolonged) Cl(-) efflux and H(+) influx. Pharmacological analyses suggested that the two phases of the [Ca(2+)](cyt) response correspond to Ca(2+) influx through the plasma membrane and an inositol 1,4,5-trisphophate-mediated release of Ca(2+) from intracellular Ca(2+) stores, respectively, and the [Ca(2+)](cyt) transients and the Cl(-) efflux were mutually dependent events regulated by protein phosphorylation. The elicitor also induced production of ROS including (*)O(2)(-) and H(2)O(2), which initiated after the [Ca(2+)](cyt) rise and required Ca(2+) influx, Cl(-) efflux and protein phosphorylation. An inhibitor of NADPH oxidase, diphenylene iodonium, completely inhibited the elicitor-induced production of (*)O(2)(-) and H(2)O(2), but did not affect the [Ca(2+)](cyt) transients. These results suggest that cryptogein-induced plasma membrane Ca(2+) influx is independent of ROS, and NADPH oxidase dependent ROS production is regulated by these series of ion fluxes.  相似文献   

4.
The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.  相似文献   

5.
In tobacco (Nicotiana tabacum), hyperosmotic stress induces rapid activation of a 42-kD protein kinase, referred to as Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK). cDNA encoding the kinase was cloned and, based on the predicted amino acid sequence, the enzyme was assigned to the SNF1-related protein kinase type 2 (SnRK2) family. The identity of the enzyme was confirmed by immunoprecipitation of the active kinase from tobacco cells subjected to osmotic stress using antibodies raised against a peptide corresponding to the C-terminal sequence of the kinase predicted from the cloned cDNA. A detailed biochemical characterization of NtOSAK purified from stressed tobacco cells was performed. Our results show that NtOSAK is a calcium-independent Ser/Thr protein kinase. The sequence of putative phosphorylation sites recognized by NtOSAK, predicted by the computer program PREDIKIN, resembled the substrate consensus sequence defined for animal and yeast (Saccharomyces cerevisiae) AMPK/SNF1 kinases. Our experimental data confirmed these results, as various targets for AMPK/SNF1 kinases were also efficiently phosphorylated by NtOSAK. A range of protein kinase inhibitors was tested as potential modulators of NtOSAK, but only staurosporine, a rather nonspecific protein kinase inhibitor, was found to abolish the enzyme activity. In phosphorylation reactions, NtOSAK exhibited a preference for Mg(2+) over Mn(2+) ions and an inability to use GTP instead of ATP as a phosphate donor. The enzyme activity was not modulated by 5'-AMP. To our knowledge, these results represent the first detailed biochemical characterization of a kinase of the SnRK2 family.  相似文献   

6.
Recruitment of individuals of the marine alga Ulva linza on to a suitable habitat involves the settlement of motile zoospores on to a substratum during which a preformed adhesive is secreted by vesicular exocytosis. The fluorescent styryl dye FM 1-43 and fluorescent Ca(2+) indicators were used to follow membrane cycling and changes in cytosolic Ca(2+) ([Ca(2+)](cyt)) associated with settlement. When swimming zoospores were exposed continuously to FM 1-43, the plasma membrane was preferentially labelled. During settlement, FM 1-43-labelled plasma membrane was rapidly internalized reflecting high membrane turnover. The internalized membrane was focused into a discrete region indicating targeting of membrane to an endosome-like compartment. Acetoxymethyl (AM)-ester derivatives were found to be unsuitable for monitoring [Ca(2+)](cyt) because the dyes were rapidly sequestered from the cytoplasm into sub-cellular compartments. [Ca(2+)](cyt) was, however, reliably measured using dextran-conjugated calcium indicators delivered into cells using a biolistic technique. Cells loaded with Oregon Green BAPTA-1 dextran (Invitrogen, Paisley, UK) showed diffuse cytosolic loading and reliably responded to imposed changes in [Ca(2+)](cyt). During settlement, zoospores exhibited both localized and diffuse increases in [Ca(2+)](cyt) implying a role for [Ca(2+)](cyt) in exocytosis of the adhesive.  相似文献   

7.
Microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) often induce rises in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) and protein phosphorylation. Though they are postulated to play pivotal roles in plant innate immunity, their molecular links and the regulatory mechanisms remain largely unknown. To investigate the regulatory mechanisms for MAMP-induced Ca(2+) mobilization, we have established a transgenic rice (Oryza sativa) cell line stably expressing apoaequorin, and characterized the interrelationship among MAMP-induced changes in [Ca(2+)](cyt), production of reactive oxygen species (ROS) and protein phosphorylation. Oligosaccharide and sphingolipid MAMPs induced Ca(2+) transients mainly due to plasma membrane Ca(2+) influx, which were dramatically suppressed by a protein phosphatase inhibitor, calyculin A (CA). Hydrogen peroxide and hypo-osmotic shock triggered similar [Ca(2+)](cyt) elevations, which were not affected by CA. MAMP-induced protein phosphorylation, which is promoted by CA, has been shown to be required for ROS production and MAPK activation, while it negatively regulates MAMPs-induced Ca(2+) mobilization and may play a crucial role in temporal regulation of [Ca(2+)](cyt) signature.  相似文献   

8.
Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants.  相似文献   

9.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

10.
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a metabolite of DDT (1,1-dichlorodiphenyltrichloroethane), is a persistent hormonally active environmental toxicant that has been found in human serum and follicular fluid. The objective of this study was to determine whether DDE can alter free calcium ion concentrations in the cytosol ([Ca(2+)](cyt)) of human granulosa cells. Changes in [Ca(2+)](cyt) in single cells loaded with Fura-2 were studied using a dynamic digital Ca(2+) imaging system. At a concentration of 100 ng/ml, DDE stimulated small elevations of [Ca(2+)](cyt) accompanied by Ca(2+) oscillations. At 1 microg DDE/ml, there was a biphasic Ca(2+) response with marked elevations of [Ca(2+)](cyt) over time. In Ca(2+)-free medium, cells showed an initial small elevation of [Ca(2+)](cyt), which was magnified after addition of Ca(2+) to the medium. Washing the cells after DDE treatment failed to remove the elevated [Ca(2+)](cyt) and oscillations, both of which were eliminated by addition of EGTA. ATP also induced [Ca(2+)](cyt) elevations and oscillations, and these effects were potentiated when DDE was added. FSH induced transient [Ca(2+)](cyt) elevations, whereas hCG caused a prolonged elevation and marked oscillations in [Ca(2+)](cyt). These results suggest that DDE at concentrations normally found in human tissues induces elevations in [Ca(2+)](cyt) in granulosa-lutein cells. Our data therefore highlight a novel mechanism through which DDE can alter endocrine homeostasis and possibly act as an endocrine toxicant.  相似文献   

11.
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.  相似文献   

12.
At concentrations greater than 0.1 mM, CuSO(4) provoked a rapid and sustained increase in the cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), in tobacco suspension culture cells expressing apoaequorin, a Ca(2+)-sensitive photoprotein. The increase was suppressed by treatment with LaCl(3), indicating that the increase is due to an influx of Ca(2+) from the apoplast through plasma membrane Ca(2+) channels. Although stimulation of H(2)O(2) production upon the CuSO(4) treatment (0.1 mM) was observed, treatment with catalase did not inhibit the increase in [Ca(2+)](cyt), and treatment with H(2)O(2) dose-dependently suppressed or delayed the increase. These results suggested that active oxygen species generated through copper-mediated reactions, or copper-mediated oxidative damages to plasma membrane, are not responsible for the increase. Treatment with sulfhydryl reagents, which alkylate or oxidize thiol groups, or acidification of the culture medium suppressed the increase in [Ca(2+)](cyt). These results demonstrated that copper causes an influx of Ca(2+) through plasma membrane Ca(2+) channels, and that plasma membrane thiol groups play an important role in activating the Ca(2+) channels.  相似文献   

13.
14.
Pituitary gonadotropes transduce hormonal input into cytoplasmic calcium ([Ca(2+)](cyt)) oscillations that drive rhythmic exocytosis of gonadotropins. Using Calcium Green-1 and rhod-2 as optical measures of cytoplasmic and mitochondrial free Ca(2+), we show that mitochondria sequester Ca(2+) and tune the frequency of [Ca(2+)](cyt) oscillations in rat gonadotropes. Mitochondria accumulated Ca(2+) rapidly and in phase with elevations of [Ca(2+)](cyt) after GnRH stimulation or membrane depolarization. Inhibiting mitochondrial Ca(2+) uptake by the protonophore CCCP reduced the frequency of GnRH-induced [Ca(2+)](cyt) oscillations or, occasionally, stopped them. Much of the Ca(2+) that entered mitochondria is bound by intramitochondrial Ca(2+) buffering systems. The mitochondrial Ca(2+) binding ratio may be dynamic because [Ca(2+)](mit) appeared to reach a plateau as mitochondrial Ca(2+) accumulation continued. Entry of Ca(2+) into mitochondria was associated with a small drop in the mitochondrial membrane potential. Ca(2+) was extruded from mitochondria more slowly than it entered, and much of this efflux could be blocked by CGP-37157, a selective inhibitor of mitochondrial Na(+)-Ca(2+) exchange. Plasma membrane capacitance changes in response to depolarizing voltage trains were increased when CCCP was added, showing that mitochondria lower the local [Ca(2+)](cyt) near sites that trigger exocytosis. Thus, we demonstrate a central role for mitochondria in a significant physiological response.  相似文献   

15.
Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from intracellular sources versus the plasma membrane as well as respond to differential energy demands at these sites. We propose that such differential mitochondrial regulation, and its disruption, may play a role in airway hyperreactivity in diseases such as asthma, where [Ca(2+)](cyt) is increased.  相似文献   

16.
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, G?6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.  相似文献   

17.
Anil VS  Rao KS 《Plant physiology》2000,123(4):1301-1312
The possible involvement of Ca(2+)-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. (45)Ca(2+)-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca(2+)](cyt) of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher (45)Ca(2+) incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca(2+)](cyt) of PEMs, increasing from a resting concentration of 30 to 50 nM to 650 to 800 nM. Chelation of exogenous Ca(2+) with ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid arrests such an elevation in [Ca(2+)](cyt). Exogenous Ca(2+) when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca(2+)-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca(2+)-mediated signaling pathway(s) involving sandalwood Ca(2+)-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca(2+) during sandalwood somatic embryogenesis.  相似文献   

18.
In plant cells, Ca(2+) is required for both structural and biophysical roles. In addition, changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) orchestrate responses to developmental and environmental signals. In many instances, [Ca(2+)](cyt) is increased by Ca(2+) influx across the plasma membrane through ion channels. Although the electrophysiological and biochemical characteristics of Ca(2+)-permeable channels in the plasma membrane of plant cells are well known, genes encoding putative Ca(2+)-permeable channels have only recently been identified. By comparing the tissue expression patterns and electrophysiology of Ca(2+)-permeable channels in the plasma membrane of root cells with those of genes encoding candidate plasma membrane Ca(2+) channels, the genetic counterparts of specific Ca(2+)-permeable channels can be deduced. Sequence homologies and the physiology of transgenic antisense plants suggest that the Arabidopsis AtTPC1 gene encodes a depolarisation-activated Ca(2+) channel. Members of the annexin gene family are likely to encode hyperpolarisation-activated Ca(2+) channels, based on their corresponding occurrence in secretory or elongating root cells, their inhibition by La(3+) and nifedipine, and their increased activity as [Ca(2+)](cyt) is raised. Based on their electrophysiology and tissue expression patterns, AtSKOR encodes a depolarisation-activated outward-rectifying (Ca(2+)-permeable) K(+) channel (KORC) in stelar cells and AtGORK is likely to encode a KORC in the plasma membrane of other Arabidopsis root cells. Two candidate gene families, of cyclic-nucleotide gated channels (CNGC) and ionotropic glutamate receptor (GLR) homologues, are proposed as the genetic correlates of voltage-independent cation (VIC) channels.  相似文献   

19.
Polyamines are required for the early phase of mucosal restitution that occurs as a consequence of epithelial cell migration. Our previous studies have shown that polyamines increase RhoA activity by elevating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) through controlling voltage-gated K(+) channel expression and membrane potential (E(m)) during intestinal epithelial restitution. The current study went further to determine whether increased RhoA following elevated [Ca(2+)](cyt) activates Rho-kinase (ROK/ROCK) resulting in myosin light chain (MLC) phosphorylation. Studies were conducted in stable Cdx2-transfected intestinal epithelial cells (IEC-Cdx2L1), which were associated with a highly differentiated phenotype. Reduced [Ca(2+)](cyt), by either polyamine depletion or exposure to the Ca(2+)-free medium, decreased RhoA protein expression, which was paralleled by significant decreases in GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. The reduction of [Ca(2+)](cyt) also inhibited cell migration after wounding. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin increased GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. Inhibition of RhoA function by a dominant negative mutant RhoA decreased the Rho-kinase activity and resulted in cytoskeletal reorganization. Inhibition of ROK/ROCK activity by the specific inhibitor Y-27632 not only decreased MLC phosphorylation but also suppressed cell migration. These results indicate that increase in GTP-bound RhoA by polyamines via [Ca(2+)](cyt) can interact with and activate Rho-kinase during intestinal epithelial restitution. Activation of Rho-kinase results in increased MLC phosphorylation, leading to the stimulation of myosin stress fiber formation and cell migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号