首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological changes of roots and shoots following oxygen deficiencyin the root medium and after partial pruning of the root systemwere analyzed to obtain easily measurable parameters of theadaptive capacity of the root system against stress. Wheat seedlings(Triticum aestivum L. cv. Hatri) were cultivated on nutrientsolution which was either aerated or flushed with nitrogen,or were cultivated on flooded sand. On the third day after grainswelling in two pruning variants, roots 1–3 or 4–8were excised. Root anaerobiosis retarded longitudinal growth and biomass accumulationof the shoot and the seminal roots, and stimulated the developmentof adventitious roots. Partial removal caused a general compensativegrowth of the remaining roots under aerobic conditions. Root pruning plus anaerobiosis exceeded the compensatory capacityof the seedlings and thus caused a strong delay of elongationand biomass accumulation of both roots and shoots, includingdecrease of the root/shoot ratio. Roots became independent ofendosperm reserves on the seventh day under aerobic conditionsthough caryopses were not completely exhausted at this time.Additionally, oxygen deficiency delayed the reserve exhaustionprocess. Triticum aestivum L. cv Hatri, wheat, roots, growth analysis, morphology, anaerobiosis, strees, root pruning, compensatory capacity, caryopsis  相似文献   

2.
BACKGROUND AND AIMS: Respiratory critical oxygen pressures (COPR) determined from O(2)-depletion rates in media bathing intact or excised roots are unreliable indicators of respiratory O(2)-dependency in O(2)-free media and wetlands. A mathematical model was used to help illustrate this, and more relevant polarographic methods for determining COPR in roots of intact plants are discussed. METHODS: Cortical [O(2)] near the root apex was monitored indirectly (pea seedlings) from radial oxygen losses (ROL) using sleeving Pt electrodes, or directly (maize) using microelectrodes; [O(2)] in the root was controlled by manipulating [O(2)] around the shoots. Mathematical modelling of radial diffusive and respiratory properties of roots used Michaelis-Menten enzyme kinetics. KEY RESULTS: Respiration declined only when the O(2) partial pressure (OPP) in the cortex of root tips fell below 0.5-4.5 kPa, values consistent with depressed respiration near the centre of the stele as confirmed by microelectrode measurements and mathematical modelling. Modelling predictions suggested that the OPP of a significant core at the centre of roots could be below the usual detection limits of O(2)-microelectrodes but still support some aerobic respiration. CONCLUSIONS: In O(2)-free media, as in wetlands, the COPR for roots is likely to be quite low, dependent upon the respiratory demands, dimensions and diffusion characteristics of the stele/stelar meristem and the enzyme kinetics of cytochrome oxidase. Roots of non-wetland plants may not differ greatly in their COPRs from those of wetland species. There is a possibility that trace amounts of O(2) may still be present in stelar 'anaerobic' cores where fermentation is induced at low cortical OPPs.  相似文献   

3.
The physiological mechanisms for growth reductions of rice atlow root temperatures were investigated in detail via time coursesin nutrient status of several cultivars. During short-term exposureto low temperature, i.e. between 0–2.5 d with roots at10°C, leaf extension rates were reduced approximately 80%-95%in all cultivars. In contrast, relative growth rates of shootson a dry weight basis were often even greater for plants withroots at 10°C relative to 30°C. During long-term growthat low root temperatures, i.e. between 2.5–10 d, relativegrowth rates of shoots were reduced, chlorosis developed andcultivar differences were observed which were consistent withfield observations of cold-tolerant and cold-intolerant cultivars. The results indicate that decreases in nutrient concentrationsin plants could not account for growth reductions during short-termexposure to low root temperatures. However, it is possible thatthey are responsible for most of the growth reductions and chlorosislater than 2.5 d. The latter suggestion is not proven unequivocallybut is supported by: (i) similar results when plants were transferredto CaSO4 solutions at 30°C in terms of growth, nutrientdecreases with time and chlorosi (ii) N and sometimes P concentrationsfalling below critical levels for rice and (iii) lower nutrientuptakes and concentrations, particularly of N, in a cold-intolerantthan a cold-tolerant cultivar. Key words: Root temperature, growth, rice, nutrient uptake  相似文献   

4.
FARRAR  J. F. 《Annals of botany》1981,48(1):53-63
The respiration rate of roots on intact barley plants grownin 16 h light 8 h dark cycles shows an exponential decay inthe dark, rises on re-illumination and there is a transientfall 12–14 h into the photoperiod Roots of plants placedin the dark for up to 48 h show a continued exponential decay,and a rather small fall in soluble carbohydrate levels The respirationof roots excised from predarkened plants does not rise on additionof sucrose to the medium bathing them Respiration rate, measured10 h into the photoperiod, shows a constant relation to rootweight in plants 8–24 days old, during which time rootcarbohydrate content first falls and later rises It is concludedthat root respiration rate is not a simple function of carbohydratesupply from the shoot The importance of root respiration inthe carbon budget of barley plants is evaluated and the levelsof control operating on root respiration rate are briefly discussed Hordeum distichum (L ) Lam, barley, respiration rate, light, carbohydrate  相似文献   

5.
BACKGROUND AND AIMS: Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. METHODS: Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. KEY RESULTS: An applied pressure of 15 kPa slowed root extension by 75% after 10-20 h while the same axes thickened by about 50%. The most terminal 2-3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21% O2), while unimpeded roots were only limited below 11% O2. CONCLUSIONS: The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to hypoxia even after soil was removed. Roots still encased in impeded soil are likely to suffer from marked O2 deficits.  相似文献   

6.
-Aminobutyric acid (GABA) accumulation occurs in cultured ricecells when ammonium is added to the medium [Kishinami and Ojima(1980) Plant Cell Physiol. 21: 581–589]. Whether thisphenomenon occurs in rice plant tissues was examined with respectto exogenously supplied auxins: 2,4-dichlorophenoxyacetic acid(2,4-D), indole-3-acetic acid (IAA) and naphthalene-acetic acid(NAA). In intact rice plants grown in medium containing ammonium withoutauxin, glutamine first increased, then asparagine graduallyincreased. In both shoots and roots, the asparagine contentbecame the highest among four amino acids after 4 days of cultureperiod. GABA did not increase at all, its level remaining lowin both shoots and roots throughout the culture period. GABA accumulation was observed in excised rice root tips whenthey were incubated in the medium containing ammonium in thepresence of 2,4-D, IAA or NAA. In the absence of auxin, however,excised rice root tips accumulated asparagine and glutamine,but not GABA. Rice root segments obtained from a region in whichroot cells had already developed to maturity did not accumulateGABA but asparagine and glutamine in the presence of both ammoniumand 2,4-D. These results suggest that GABA accumulation occurs in rapidlygrowing and dividing tissue, such as the apical meristem ofrice root in the presence of auxin during ammonium assimilation. (Received June 15, 1987; Accepted March 14, 1988)  相似文献   

7.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

8.
Root distribution of soybean was determined under wet soil culture on two Red-Brown earths in S.E. Australia. In general there was a parabolic distribution of roots with low root length densities in the furrow (saturated soil zone) and centre of the bed (dry zone). Maximum root length density (20 cm cm−3) occurred at the base of the plants, approximately 300 mm from the furrow under wet soil culture. Roots were confined to the wet aerated zone which was determined by the permeability of the soil.  相似文献   

9.
The Critical Oxygen Pressures for Respiration in Intact Plants   总被引:7,自引:0,他引:7  
Two methods for determining critical respiratory oxygen pressure in whole plants are described. By a polarographic method involving the use of cylindrical platinum electrodes the following critical oxygen pressures for root respiration were found: Rice (cv. Norin 36). 0.024 atm: Rice (cv. Norm 37). 0.026 atm: Eriophorum angustifolium. 0.02 atm. These values contrast markedly with those obtained in vitro, and support earlier criticisms of in vitro measurements: they call into question the use of such data in the modelling of root aeration. When the results were assessed by an electrical analogue system, it was concluded that the respiratory activity in the intact root does not follow the normally accepted hyperbolic relationship with oxygen partial pressure. The experimental data were simulated most closely by assuming the critical oxygen pressure to be a function of respiratory responses in the low porosity (high diffusional impedance) tissues of the root meristem and stele, and respiratory activity in the moderately porous root cortex to be unaffected at values greater than 0.001 atm. A critical oxygen pressure of 0.025–0.04 atm for E. angustifolium was found from analyses of the gas phase oxygen in the leaves of whole plants after submergence in the dark. It was concluded that the higher value found by this method was most likely a function of respiratory responses in root tissue remote from the leaf and should not be regarded as the critical oxygen pressure for leaf respiration. The form of the oxygen concentration vs. time plot again suggested a very much lower critical oxygen pressure for certain of the plant tissues.  相似文献   

10.
The apical 2 cm of seedling roots of oilseed rape (Brassica napus L., cv. Primor) produced more ethylene than adjacent, older tissue. Treatment with 5 × 10–3 mol m–3 3,5-diiodo4-hydroxybenzoic acid (DIHB), a presumed inhibitor of ethylene action, failed to stimulate root extension. Larger concentrations were inhibitory. Ethylene, applied as ethephon decreased root extension but DIHB (5 × 10–3 mol m–3) partially overcame this effect. Oxygen concentrations below that present in air also inhibited root extension but this was not ameliorated by DIHB.Roots of barley seedlings (Hordeum vulgare L., cv. Midas) evolved ethylene more slowly than roots of oilseed rape. DIHB (10–3–10–2 mol m–3) stimulated root extension in the absence of ethephon. Ethephon alone retarded root extension but DIHB partially overcame this inhibition. Small concentrations of oxygen also inhibited root extension but DIHB failed to ameliorate the effect even though the slow growth of oxygen-deficient roots (3–5% oxygen) was associated with abnormally fast rates of endogenous ethylene production.Extension growth in different oxygen concentrations was more closely associated with rates of oxygen consumption than with the amount of ethylene produced. Thus respiration rather than ethylene appeared to limit root extension under oxygen deficiency. This may explain why DIHB was unable to offset this form of environmental stress.  相似文献   

11.
Root tips (10-millimeter length) were excised from hypoxically pretreated (HPT, 4% [v/v] oxygen at 25°C for 16 hours) or nonhypoxically pretreated (NHPT, 40% [v/v] oxygen) maize (Zea mays) plants, and their rates of respiration were compared by respirometry under aerobic and anaerobic conditions with exogenous glucose. The respiratory quotient under aerobic conditions with 50 millimolar glucose was approximately 1.0, which is consistent with glucose or other hexose sugars being utilized as the predominant carbon source in glycolysis. Under strictly anaerobic conditions (anoxia), glycolysis was accelerated appreciably in both HPT and NHPT root tips, but the rate of anaerobic respiration quickly declined in NHPT roots. [U-14C]Glucose supplied under anaerobic conditions was taken up and respired by HPT root tips up to five times more rapidly than by NHPT roots. When anaerobic ethanol production was measured with excised root tips in 50 millimolar glucose, HPT tissues consistently produced ethanol more rapidly than NHPT tissues. These data suggest that a period of low oxygen partial pressure is necessary to permit adequate acclimation of the root tip of maize to subsequent anoxia, resulting in more rapid rates of fermentation and generation of ATP.  相似文献   

12.
Exudation of amino acids by intact and damaged roots of wheat and peas   总被引:5,自引:0,他引:5  
Summary Wheat and pea seedlings were grown aseptically in solution-culture and the total free amino nitrogen released by the roots was determined by a quantitative ninhydrin test. Amino nitrogen from wheat plants after 14 days growth was not detected by the test, indicating the release of less than 3 µg of amino nitrogen from a culture of 15 plants. Pea plants of the same age released from 2 to 7 µg per plant. Paper chromatograms of highly concentrated undisturbed solution-cultures revealed up to 13 amino compounds from wheat and 11 from pea. The pattern of amino acids in exudates was similar to that in crushed roots, except for an unidentified amino compound which was detected only in exuded material. The total amino nitrogen and relative proportions of several amino acids in the root exudates of sand-grown peas was influenced by several ratios of oxygen and carbon dioxide supplied to the root zone. Roots, experimentally damaged by swirling and rinsing in sand, released in 1 hour amino nitrogen of from 73 to 120 per cent of that released by normal exudation over a 2-week period. Our findings suggest that experimental and environmental root damage may be responsible for a large proportion of organic materials released by growing plant roots.Trade names are used in this publication to provide specific information. Their use does not constitute a guarantee of the products named and does not signify that they are approved by the U.S. Department of Agriculture to the exclusion of others of suitable composition.  相似文献   

13.
14.
15.
Summary In order to investigate the nature of the tolerance of mesophytes and hydrophytes to root anaerobiosis, changes in the mitochondrial ultrastructure of excised roots (with and without added glucose under anoxia) were studied in plants from two ecologically opposite types-pumpkin and rice.A 12-hour exposure to anoxia led to mitochondrial degradation in roots of adult rice and pumpkin plants. The addition of glucose preserved cell ultrastructure for up to 72–96 hours. During this period mitochondrial ultrastructure changed. In rice roots this primarily involved an increased number of cristae and a change in their arrangement into parallel rows. Cells of pumpkin roots displayed long mitochondria (up to 55 m) of different profiles which fused to form a complex mitochondrial network that was in close association with parts of the endoplasmic reticulum carrying a large number of ribosomes. This may be regarded as an adaptive development that facilitates the transport of glycolytic energy along mitochondrial membranes to the sites of protein synthesis.It is concluded that root cells of a hydrophyte are not more tolerant to anoxia than mesophyte. Thus, the ability of hydrophytes to grow on anaerobic soils should be attributed not so much to peculiar features of the roots' metabolism but to the ability of these plants to perform an easy transport of O2 from leaves to roots. With respect to mesophytes it is stressed that the supply of assimilates is important for the resistance of roots to soil anaerobiosis.  相似文献   

16.
Intact or excised roots, immersed in anaerobic aqueous agarmedia with or without additions of sugar, were made anoxic byexposing the shoots (or cut-ends) to oxygen-free nitrogen. Polarographicmonitoring of the internal oxygen status showed that roots rapidlybecame anoxic; also extension growth immediately declined andwas soon halted. Growth was re-started only by re-aeration and,in sugar deficient media, apices survived only if the periodof anoxia had not exceeded 4 h (rice), 6 h (pea) and 12 h (pumpkin). Utilizable carbohydrate supplied exogenously could reduce therate of decline in growth rate (rice and pumpkin) but couldnot of itself indefinitely sustain or induce growth; it enhancedviability, however, and rice became the most tolerant of anoxia(c. 44 h). Oxygen was essential both to sustain and initiateroot extension but growth could cease and apical death ensuefrom an insufficiency of carbohydrate even in the presence ofoxygen. It is concluded that the normal response of roots toanoxia is a hypersensitive one arising from sugar deficiency. The discussion relates the results to recent reports concerningcarbohydrate and energy levels in anoxic and aerated roots,to work on ultrastructural change under anoxia, and to the subjectof flood tolerance. The results are not thought to accord witha metabolic theory of flood-tolerance based upon differencesin the accumulation and phytotoxicities of ethanol and otherby-products of anaerobic respiration. They are considered tobe more in keeping with the view that flood-tolerance in rootsis chiefly a property of internal aeration and the potentialfor producing well-ventilated roots in response to soil wetness. Key words: Anoxia, Carbohydrates, Growth, Roots  相似文献   

17.
Apoplastic transport across young maize roots: effect of the exodermis   总被引:27,自引:0,他引:27  
The uptake of water and of the fluorescent apoplastic dye PTS (trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate) by root systems of young maize (Zea mays L.) seedlings (age: 11–21 d) has been studied with plants which either developed an exodermis (Casparian band in the hypodermis) or were lacking it. Steady-state techniques were used to measure water uptake across excised roots. Either hydrostatic or osmotic pressure gradients were applied to induce water flows. Roots without an exodermis were obtained from plants grown in hydroponic culture. Roots which developed an exodermis were obtained using an aeroponic (=mist) cultivation method. When the osmotic concentration of the medium was varied, the hydraulic conductivity of the root (Lp r in m3 · m−2 · MPa−1 · s−1) depended on the osmotic pressure gradient applied between root xylem and medium. Increasing the gradient (i.e. decreasing the osmotic concentration of the medium; range: zero to 40 mM of mannitol), increased the osmotic Lp r. In the presence of hydrostatic pressure gradients applied by a pressure chamber, root Lp r was constant over the entire range of pressures (0–0.4 MPa). The presence of an exodermis reduced root Lp r in hydrostatic experiments by a factor of 3.6. When the osmotic pressure of the medium was low (i.e. in the presence of a strong osmotic gradient between xylem sap and medium), the presence of an exodermis caused the same reduction of root Lp r in osmotic experiments as in hydrostatic ones. However, when the osmotic concentration of the medium was increased (i.e. the presence of low gradients of osmotic pressure), no marked effect of growth conditions on osmotic root Lp r was found. Under these conditions, the absolute value of osmotic root Lp r was lower by factors of 22 (hydroponic culture) and 9.7 (aeroponic culture) than in the corresponding experiments at low osmotic concentration. Apoplastic flow of PTS was low. In hydrostatic experiments, xylem exudate contained only 0.3% of the PTS concentration of the bathing medium. In the presence of osmotic pressure gradients, the apoplastic flow of PTS was further reduced by one order of magnitude. In both types of experiments, the development of an exodermis did not affect PTS flow. In osmotic experiments, the effect of the absolute value of the driving force cannot be explained in terms of a simple dilution effect (Fiscus model). The results indicate that the radial apoplastic flows of water and PTS across the root were affected differently by apoplastic barriers (Casparian bands) in the exodermis. It is concluded that, unlike water, the apoplastic flow of PTS is rate-limited at the endodermis rather than at the exodermis. The use of PTS as a tracer for apoplastic water should be abandoned. Received: 9 October 1997 / Accepted: 5 February 1998  相似文献   

18.
The Anchorage Mechanics of Maize, Zea mays   总被引:2,自引:0,他引:2  
The anchorage system of mature maize Zea mays was investigatedby combining morphological and anatomical study of the rootsystem with mechanical tests on roots and with studies in whichplants were pulled over. The root system is dominated by 20–30adventitious roots which emerge in rings from the stem basepointing radially downwards and outwards, approximately 30°from the vertical. Roots are strengthened near their base bya heavily lignified exodermis which makes them rigid in bending;distally, strength and rigidity both decrease because rootsbecome thinner and less lignified. When plants were pulled over,a maximum anchorage moment of 5–20 Nm was mobilized atangles of 8–10°, larger plants having stronger anchorage.Movement was initially centred on the leeward side of the stem,anchorage being due to the resistance of both windward and leewardroots to axial motion through the soil and to bending. At displacementsover 10°, however, leeward roots buckled under combinedbending and compression and the centre of rotation shifted tothe windward perimeter of the root system; subsequent movementof the cone of roots and soil was resisted only by the bearingstrength of the soil beneath it. The differences between anchorage failure in balsam and sunflowersand that in maize probably results from the lower angular spreadand the weakness in compression of the maize roots which preventsthe leeward side of the root system from bearing large downwardloads. The system behaves more like that of wheat; these resultssuggest that the lodging resistance of both plants may be improvedby increasing the bending strength and angle of spread of theadventitious roots. Key words: Zea mays, roots, anchorage  相似文献   

19.
 Actively growing root tips of Picea sitchensis (Bong.) Carr. plants are highly susceptible to damage if waterlogged, but they are known to have some tolerance after they stop growing in the autumn. This paper describes the selection of clones on the basis of root dormancy timing and the corresponding responses of their roots to over-winter waterlogging. Sitka spruce transplants of Alaska, Queen Charlotte Islands (QCI), and Washington provenances were screened for early or late root dormancy over 2 successive years. Cuttings were propagated from the selected plants and after growing on for 2 years, they were planted in transparent acrylic tubes within outdoor ‘root observation chambers’. Extension of main roots and the timing of onset of root dormancy was recorded on the clonal plants. The tubes were flooded in November and maintained with a water table 280 mm below the soil surface until March of the next year. Waterlogging caused most main root tips to die back, but within 2 months of draining regeneration occurred on the main roots below the waterlogging level. This regeneration was most commonly the growth of existing lateral tips or production of new lateral roots. Roots of early-dormant Washington plants died back on average 129 mm less than late-dormant Washington plants, and early-dormant Alaska plants had 173 mm less dieback than late-dormant Alaska plants. Differences between the clones of the QCI provenance were not significant. The 40% and 52% increases in survival depth of roots in early-dormant Washington and Alaska clones respectively indicates a potential for improving the rooting depth of Sitka spruce on seasonally waterlogged soils by planting clones selected on the basis of root dormancy. Received: 14 July 1997 / Accepted: 15 September 1997  相似文献   

20.
Hydroponic sunflower plants were used in a quantitative studyof the relationship between total plant and leaf resistancesto transpirational water movement and transpiration rate. Theresults demonstrate that both resistances are flux-dependentand decline 5–6-fold during a comparable increase in transpiration.The resistance of excised leaves including the petiole was approximatelyhalf the total plant resistance. Subsequent analyses of the water potential gradients and transpirationalfluxes in whole plants permitted calculation of the magnitudeof the partial resistances imposed by roots, stem, petiole,and leaf. The root and leaf resistances were approximately 50%and 30% of the total resistance respectively. Stem and petiolarresistances were relatively small and both influenced watermovement to the upper leaves similarly. The values obtainedare compared with previous published results obtained usingdiverse experimental techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号