首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Summary Recombinant inbred lines (RILs) derived by single plant descent to F8 from a hybrid of Anza, a low-quality cultivar, and Cajeme 71, a high-quality cultivar, differed in alleles at three high-molecular-weight glutenin (HMW-glu) seed storage protein loci. The 48 RILs were classified by SDS-PAGE for the Anza alleles Glu-Alc (null), Glu-B1b (subunits 7 + 8), and Glu-D1a (subunits 2 + 12) and for Cajeme 71 alleles Glu-A1a (sub-unit 1), Glu-B1I (subunits 17 + 18), and Glu-D1d (subunits 5 + 10). All RILs and parents were grown in a replicated field trial with three levels of nitrogen (N) fertilization. Additive and additive x additive gene effects for the three loci were detected by orthogonal comparisons of means for each of six wheat end-use quality traits. Each HMW-glu genotype was represented by three to ten RILs so that variability among RILs within each HMW-glu genotype could be examined. N effects were consistently small. All traits except flour yield were highly correlated with predictor traits studied earlier. Flour protein content, baking water absorption, dough mixing time, bread loaf volume, and bread loaf crumb score were all correlated, suggesting similar gene control for these traits; however, specific additive locus contributions were evident: B for flour yield; B and D for flour protein; and B for absorption, but differing in sign; all three loci for mixing time, but B was negative; and all three loci were positively associated with loaf volume. Digenic epistatic effects were significant for flour yield (AD), flour protein (AB), and absorption and mixing time (AD, BD). Only flour yield showed a trigenic epistatic effect. Six of seven epistatic effects were negative, thus showing how progress in breeding for high quality may be impeded by interaction of genes which, by themselves, have strong positive additive effects. Considerable genetic variance among RILs within a HMW-glu genotype was detected for all traits, and the summation of effects accounted for a mean of 13% of the parental differences for the six traits examined in this study. Clearly, further resolution of the genetics of wheat quality would be desirable from a plant breeding point of view.  相似文献   

2.
Summary The high-molecular-weight glutenin subunits (HMW glutenin), encoded by alleles at homoeologous lociGlu-A1,Glu-B1, andGlu-D1 on the long arms of chromosomes1A,1B, and1D of a set of F8 random recombinant inbred lines (RIL) derived from the bread wheat cross Anza × Cajeme 71, were classified by SDS-PAGE. Anza has poor breadmaking quality and HMW-glutenin subunits (Payne numbers) null (Glu-A1c), 7+8 (Glu-B1b), and 2+12 (Glu-D1a); Cajeme 71 has good quality and 1 (Glu-A1a), 17+18 (Glu-B1i), and 5+10 (Glu-D1d). The combinations of these alleles in the RIL were examined for associations with grain yield and four indicators of grain quality — protein content, yellowberry, pearling index, and SDS sedimentation volume. Data were obtained from a field experiment with three nitrogen fertilization treatments on 48 RIL and the parents. Orthogonal partitioning of the genetic variance associated with the three HMW glutenin subunit loci into additive and epistatic (digenic and trigenic) effects showed strong associations of these loci with grain yield and the indicators of quality; however, the associations accounted for no more than 25% of the differences between the parents. Genetic variance was detected among the RIL, which had the same HMW glutenin genotype for all traits. Epistatic effects were absent for grain yield and yellowberry, but were substantial for grain protein content, pearling index, and SDS sedimentation volume. All three loci had large single-locus additive effects for grain yield, protein, and SDS sedimentation volume. Yellowberry was largely influenced byGlu-B1 andGlu-D1, whereas pearling index was associated withGlu-A1 andGlu-B1. Even though the observed associations-of effects of HMW glutenin loci with the quantitative characters were small relative to the total genetic variability, they are of considerable importance in understanding the genetics of wheat quality, and are useful in the development of new wheat varieties with specific desired characteristics.  相似文献   

3.
High-molecular-weight (HMW) glutenin subunits are a particular class of wheat endosperm proteins containing a large repetitive domain flanked by two short N- and C-terminal non-repetitive regions. Deletions and insertions within the central repetitive domain has been suggested to be mainly responsible for the length variations observed for this class of proteins. Nucleotide sequence comparison of a number of HMW glutenin genes allowed the identification of small insertions or deletions within the repetitive domain. However, only indirect evidence has been produced which suggests the occurrence of substantial insertions or deletions within this region when a large variation in molecular size is present between different HMW glutenin subunits. This paper represents the first report on the molecular characterization of an unusually large insertion within the repetitive domain of a functional HMW glutenin gene. This gene is located at the Glu-D1 locus of a hexaploid wheat genotype and contains an insertion of 561 base pairs that codes for 187 amino acids corresponding to the repetitive domain of a HMW glutenin subunit encoded at the same locus. The precise location of the insertion has been identified and the molecular processes underlying such mutational events are discussed.  相似文献   

4.
Genetic improvement of aluminum (Al) tolerance is one of the cost-effective solutions to improve wheat (Triticum aestivum) productivity in acidic soils. The objectives of the present study were to identify quantitative trait loci (QTL) for Al-tolerance and associated PCR-based markers for marker-assisted breeding utilizing cultivar Atlas 66. A population of recombinant inbred lines (RILs) from the cross Atlas 66/Century was screened for Al-tolerance by measuring root-growth rate during Al treatment in hydroponics and root response to hematoxylin stain of Al treatment. After 797 pairs of SSR primers were screened for polymorphisms between the parents, 131 pairs were selected for bulk segregant analysis (BSA). A QTL analysis based on SSR markers revealed one QTL on the distal region of chromosome arm 4DL where a malate transporter gene was mapped. This major QTL accounted for nearly 50% of the phenotypic variation for Al-tolerance. The SSR markers Xgdm125 and Xwmc331 were the flanking markers for the QTL and have the potential to be used for high-throughput, marker-assisted selection in wheat-breeding programs.  相似文献   

5.
A number of useful marker-trait associations have been reported for wheat. However the number of publications detailing the integrated and pragmatic use of molecular markers in wheat breeding is limited. A previous report by some of these authors showed how marker-assisted selection could increase the genetic gain and economic efficiency of a specific breeding strategy. Here, we present a practical validation of that study. The target of this breeding strategy was to produce wheat lines derived from an elite Australian cultivar ‘Stylet’, with superior dough properties and durable rust resistance donated from ‘Annuello’. Molecular markers were used to screen a BC1F1 population produced from a cross between the recurrent parent ‘Stylet’ and the donor parent ‘Annuello’ for the presence of rust resistance genes Lr34/Yr18 and Lr46/Yr29. Following this, marker-assisted selection was applied to haploid plants, prior to chromosome doubling with cochicine, for the rust resistance genes Lr24/Sr24, Lr34/Yr18, height reducing genes, and for the grain protein genes Glu-D1 and Glu-A3. In general, results from this study agreed with those of the simulation study. Genetic improvement for rust resistance was greatest when marker selection was applied on BC1F1 individuals. Introgression of both the Lr34/Yr18 and Lr46/Yr29 loci into the susceptible recurrent parent background resulted in substantial improvement in leaf rust and stripe rust resistance levels. Selection for favourable glutenin alleles significantly improved dough resistance and dough extensibility. Marker-assisted selection for improved grain yield, through the selection of recurrent parent genome using anonymous markers, only marginally improved grain yield at one of the five sites used for grain yield assessment. In summary, the integration of marker-assisted selection for specific target genes, particularly at the early stages of a breeding programme, is likely to substantially increase genetic improvement in wheat.  相似文献   

6.
Septoria tritici blotch (STB) caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is one of the most important foliar diseases of wheat. We assessed three doubled-haploid (DH) populations derived from Chara (STB-susceptible)/WW2449 (STB-resistant), Whistler (STB-susceptible)/WW1842 (STB-resistant) and Krichauff (STB susceptible)/WW2451 (STB-resistant) for resistance to a single-pycnidium isolate 79.2.1A of M. graminicola at the seedling stage. STB resistance in each of the three DH populations was conditioned by a single major gene designated as StbWW2449, StbWW1842 and StbWW2451. Linkage analyses and physical mapping indicated that the StbWW loci were located on the short arm of chromosome 1B (IBS). Four simple sequence repeat (SSR) markers linked with STB resistance: Xwmc230, Xbarc119b, Xksum045 and Xbarc008 were located to the distal bin of 1BS.sat1BS-4 (FL: 0.52–1.00) in the 1BS physical map. Xwmc230, Xbarc119b and Xksum045 markers, mapped within 7 cM from StbWW were validated for their linkage and predicted the STB resistance with over 94% accuracy in the 79 advanced breeding lines having WW2449 as one of the parents. The marker interval Xwmc230/Xksum045-Xbarc119b also explained up to 38% of the phenotypic variance at the adult plant stage in all three DH mapping populations. These results have proven that SSR markers are useful in monitoring STB resistance both at seedling and adult plant stages and hence are suitable for routine marker-assisted selection in the wheat breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Wheat pre-harvest sprouting (PHS) can cause significant reduction in yield and end-use quality of wheat grains in many wheat-growing areas worldwide. To identify a quantitative trait locus (QTL) for PHS resistance in wheat, seed dormancy and sprouting of matured spikes were investigated in a population of 162 recombinant inbred lines (RILs) derived from a cross between the white PHS-resistant Chinese landrace Totoumai A and the white PHS-susceptible cultivar Siyang 936. Following screening of 1,125 SSR primers, 236 were found to be polymorphic between parents, and were used to screen the mapping population. Both seed dormancy and PHS of matured spikes were evaluated by the percentage of germinated kernels under controlled moist conditions. Twelve SSR markers associated with both PHS and seed dormancy were located on the long arm of chromosome 4A. One QTL for both seed dormancy and PHS resistance was detected on chromosome 4AL. Two SSR markers, Xbarc 170 and Xgwm 397, are 9.14 cM apart, and flanked the QTL that explained 28.3% of the phenotypic variation for seed dormancy and 30.6% for PHS resistance. This QTL most likely contributed to both long seed dormancy period and enhanced PHS resistance. Therefore, this QTL is most likely responsible for both seed dormancy and PHS resistance. The SSR markers linked to the QTL can be used for marker-assisted selection of PHS-resistant white wheat cultivars. Shi-Bin Cai and Cui-Xia Chen contributed equally to this work.  相似文献   

8.
Zhang K  Tian J  Zhao L  Liu B  Chen G 《Genetica》2009,135(3):257-265
Quantitative trait loci (QTLs) with epistatic and QTL × environment (QE) interaction for heading date were studied using a doubled haploid (DH) population containing 168 progeny lines derived from a cross between two elite Chinese wheat cultivars Huapei 3 × Yumai 57 (Triticum aestivum L.). A genetic map was constructed based on 305 marker loci, consisting of 283 SSR loci and 22 EST-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers in the genome. QTL analyses were performed using a mixed linear model approach. Two main-effect QTLs and two pairs of digenic epistatic effects were detected for heading date on chromosomes 1B, 2B, 5D, 6D, 7A, and 7D at three different environments in 2005 and 2006 cropping seasons. A highly significant QTL with an F-value 148.96, designated as Qhd5D, was observed within the Xbarc320-Xwmc215 interval on chromosome 5DL, accounting for 53.19% of the phenotypic variance and reducing days-to-heading by 2.77 days. The Qhd5D closely links with a PCR marker Xwmc215 with the genetic distance 2.1 cM, which can be used in molecular marker-assisted selection (MAS) in wheat breeding programs. Moreover, the Qhd5D was located on the similar position of well-characterised vernalization sensitivity gene Vrn-D1. We are also spending more efforts to develop near-isogenic lines to finely map the Qhd5D and clone the gene Vrn-D1 through map-based cloning. The Qhd1B with additive effect on heading date has not been reported in previous linkage mapping studies, which might be a photoperiod-sensitive gene homoeologous to the Ppd-H2 gene on chromosome 1B. No main-effect QTLs for heading date were involved in epistatic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号